
Contents

1 Distributed Multi Agent Learning for Portfolio Management 1
1.1 Subject . 1
1.2 Team . 1
1.3 Work Plan . 1
1.4 Project Proposal . 1

1.4.1 Introduction: . 1
1.4.2 Task 0: Deploy Remote Agent 2
1.4.3 Task 1: Centralized Database 2
1.4.4 Task 2: Plotting Performance 2
1.4.5 Task 3: Hyper-parameter optimization 2
1.4.6 Task 4: Hyper-parameter evolution 3
1.4.7 Task 5: Additional learning features 3
1.4.8 Task 6: Transfer Learning 3
1.4.9 Task 7: Inter-agent communication 3
1.4.10 What technologies are you using? What do you need? 3
1.4.11 Questions / Concerns 4
1.4.12 Task Division . 4
1.4.13 Timeline . 4

1.5 References . 5

1 Distributed Multi Agent Learning for Portfolio

Management

CMPT 756: Systems for Big Data Project Proposal

1.1 Subject

Our subject is on virtualized trading agents that can be easily deployed
to cloud environments. Agents refer to deep reinforcement learning based
cryptocurrency trading bots as outlined in this paper, and implemented in
this repo. By deploying trading agents to virtualized cloud environments
we are able to easily scale up the number of active bots. By having many
bots deployed we are able to do interesting things like parallel grid search
over hyper-parameters, inter-agent communication, and genetic program-
ming based bot evolution.

1

https://wwarxiv.org/pdf/1706.10059.pdf
https://github.com/zhengyaojiang/pgportfolio

1.2 Team

Shawn Anderson Sethuraman Annamalai Namita Shah

1.3 Work Plan

We have scheduled weekly meetings every Tuesday 2-5 pm. Meetings will
serve the following purposes:

� Share progress of past week, get all team mates on same page

� Brainstorm next steps and project ideas

� Collaborative work session for project tasks

In addition to meetings we will all work as individuals throughout the week
to stay up to date, and accomplish assigned tasks for the project.

1.4 Project Proposal

1.4.1 Introduction:

In Deep Reinforcement for the Financial Portfolio Management Problem,
the authors build a trading bot that re-optimizes a cryptocurrency portfolio
at every time step. Our goal is to encapsulate the software that the authors
release along with the paper, thus being able to spin up instances of the
code(agents) in a cloud environment. Once the initial phase of cloud de-
ployment is accomplished, there are various interesting scienti�c routes that
could be taken from there.

1.4.2 Task 0: Deploy Remote Agent

Create a cloud environment template which will be ready to run the PGPort-
folio software. Be able to instantiate an agent environment with an API call.
Have Agent request initialization parameters from server. Have agent down-
load its appropriate training and testing data. Perform hardware queries for
dynamic optimization (Attempt GPU?). Begin training and testing.

1.4.3 Task 1: Centralized Database

Maintain a database which exposes a web API as a RESTful interface. This
database will keep track of all agents that have been deployed, their param-
eters, and performance metrics. A newly deployed agent will make a request

2

https://www.arxiv.org/pdf/1706.10059.pdf

to the API for it's initialization parameters. From maintaining this data,
we are able to retrieve interesting statistics like which agents performed the
best over which periods, how many agents have been active at what times,
which agent made the most Bitcoin, ect.

1.4.4 Task 2: Plotting Performance

Once we have remote agents posting performance metrics to the data base,
we would like to have some sort of visualization of these metrics. Visualiza-
tion will serve as a sanity check to ensure that things are working properly,
as well as it will serve as a powerful analysis and debugging tool as we move
on to more advanced tasks.

1.4.5 Task 3: Hyper-parameter optimization

When agents spawn, they will request initialization parameters from the
server. Having a centralized initialization state dispatcher allows us to search
the hyper-parameter space intelligently. A naive example would be to per-
form an exhaustive grid search over the hyper-parameters. But we can do
better.

1.4.6 Task 4: Hyper-parameter evolution

Distributed Evolutionary Algorithms in Python (DEAP) is a framework
for state-space optimization using evolutionary approaches like populations,
generations, �tness, mutation and pre�x-trees. This could be used as the
back-end for our parameter-initialization dispatcher.

1.4.7 Task 5: Additional learning features

In the paper, the agents are able to perform well with only historic price
movement as input. Speci�cally, only three features: High, Low, Closing,
for each time period (30 seconds). Additional features could be tested, for
example, trade volume.

1.4.8 Task 6: Transfer Learning

Transfer learning is a method in deep learning in which internal representa-
tions learned in one setting are transferred to another setting. If we could
have each agent post it's learned parameters to a URL encoded as a pre�x-
tree, or genetic representation that describes that agent. Then perhaps we
could have agents literally inherit the genes of their ancestors.

3

https://github.com/DEAP/deap

1.4.9 Task 7: Inter-agent communication

Imagine two agents sharing information, for example, one agent could tell
it's prediction's to another agent by concatenating it's output to another
agent's input. Or consider inter-agent trading, which could circumvent mar-
ket transaction fees.

1.4.10 What technologies are you using? What do you need?

1. SFU-Cloud (VM Template, DB host)

2. Python: Tensor�ow, Django REST Framework, DEAP, SCOOP

3. Database Backend

4. Poloniex API for Data

5. Optional: GPU

1.4.11 Questions / Concerns

1. Should agents stream data directly from source(poloniex) or from a
central database?

� We don't want to hammer the poloniex API, but it would be way
easier if agents get their own data

2. Why must this approach be distributed? Why is it not the same to
simply run agents as separate processes on a single machine?

� Perhaps we should spin up multiple agents as separate processes
within cloud environments?

1.4.12 Task Division

We will all work together to accomplish task 0. This will assure that all
group members become familiar with the software and deployment technique.
Other than that, we will mostly work together on tasks, but to introduce
some paralellism, we will say Shawn is responsible for tasks 1,2; Sethu is
responsible for 3,4; Namita is responsible for 5,6. Task 7 will remain as a
bonus.

4

1.4.13 Timeline

1. Optimal Task 0 is �nished before March 2nd. Each member has
acheived results on one of their two tasks by March 9th. Most members
have acheived results on their second task by March 23rd. Remaining
time is used to run experiments, investigate task 7 or additional tasks
that arrise, and write the report.

2. Likely Task 0 is �nished before March 2nd. Each member has acheived
results on one of their two tasks by March 16th. Each member has
acheived results on their second task by April 1st. Remaining time is
used to run experiments, investigate task 7, and write the report.

3. Backup Task 0 is �nished before March 9th. Some members have
acheived results on one of their two tasks by March 16th. Members
collaborate to assure the 5/8 tasks are acheived by April 1st. Remain-
ing time is used to run experiments, investigate remaining tasks, and
write the report.

1.5 References

1. Deep Reinforcement Learning for Portfolio Optimization

2. DEAP: Distributed Evolutionary Algorithms in Python

3. SCOOP: Scalable COncurrent Operations in Python

4. Django Rest Framework

5

https://arxiv.org/pdf/1706.10059.pdf
https://github.com/DEAP/deap
https://github.com/soravux/scoop/
http://www.django-rest-framework.org/

	Distributed Multi Agent Learning for Portfolio Management
	Subject
	Team
	Work Plan
	Project Proposal
	Introduction:
	Task 0: Deploy Remote Agent
	Task 1: Centralized Database
	Task 2: Plotting Performance
	Task 3: Hyper-parameter optimization
	Task 4: Hyper-parameter evolution
	Task 5: Additional learning features
	Task 6: Transfer Learning
	Task 7: Inter-agent communication
	What technologies are you using? What do you need?
	Questions / Concerns
	Task Division
	Timeline

	References

