
 

 

 

 

 

 

 

CMPT 756 

Systems For Big Data 

Cloud Computing with Apache Cloudstack and 

Cloudera Cluster Creation Report 

 

 

 

Submitted By, 

Namita Shah 

Shawn Anderson 

Sethuraman Annamalai 

 

 

 

 

 

 



 

Introduction 
Utilization of cloud computing is an           
essential skill for the contemporary Data           
Scientist. In this report we document the             
process of deploying a functional cloud           
based cluster of virtual machines, software           
ready. Apache CloudStack is used for virtual             
instance creation, and Cloudera for cluster           
deployment and software installation. We         
address security and scalability concerns to           
be aware of during installation. We also             
highlight many pitfalls and gotchas that we             
encounter, in hopes that this report may             
serve as a reference for those that wish to                 
follow a similar route in cluster deployment. 

 

Background 

I. Cloud Computing 

Cloud computing is an economic paradigm           
of computing in which computation is           
served from a central source, to consumers             
as an on-demand, elastic utility. For cloud             
users, there is no risk of under, or over                 
provisioning of infrastructure. Using a         
cloud-based virtual machine for 1000 hours           
costs the same as using 1000 machines for 1                 
hour. Big Data tasks often require heavy             
provisioning of resources for short periods           
of time, for example training a machine             
learning model. Thus, access to cloud           
computing platforms is essential to a Big             
Data practitioner. 

A cloud computing service can fit into one of                 
three categories. From highest to lowest           
level, these categories are the following:           
Software as a Service(SaaS), Platform as a             
Service(Paas), and Infrastructure as a         
Service(IaaS). This report is concerned with           
IaaS, provided by Apache Cloudstack. 

 

II. Apache CloudStack 

Apache Cloudstack is an open source Java             
based IaaS platform, provided by the Apache             
Software Foundation. CloudStack provides a         
friendly web interface for virtual machine           

template creation and instantiation,       
resource management, security groups, and         
account separation. In addition, CloudStack         
provides a native API and an S3/EC2             
compatible API for programmatic       
provisioning of resources. 

III. Cloudera 

Cloudera is a suite of tools that allows for                 
cluster creation and management. By         
installing cloudera manager on each virtual           
machine, it becomes easy to install and             
configure distributed software packages       
such as Hadoop and Spark. The cluster             
creation process is a very difficult one where               
many things can go wrong; one must be very                 
mindful of networking, configuration, stack         
selection, security, and scalability. 

IV. Security 

Security is a vital aspect of cloud             
deployment. Cloud services are by definition           
online, thus any vulnerabilities in the           
system will be exposed to the world. In order                 
for a cluster to function properly, nodes             
must be able to communicate with each             
other, thus there will be a need for               
selectively opening ports and whitelisting         
IPs. This process must be done with             
maximum caution. Only the necessary ports           
should be opened, and only internal IP’s             
should be granted access. Access to virtual             
machines should always be done over SSL             
with the use of two key authentication. In               
any case that login credentials are used             
(cloudstack, cloudera, web interfaces)       
defaults such as ‘admin admin’ must be             
changed to something more robust. 

Master node - 199.70.17.231 

Slave node - 199.70.17.7 

Ports - ​Initially, to ssh remotely into the               
VM, port 22 was opened for the ip of the ‘big                     
data lab’ (142.58.0.0/16) was opened. Also,           
port 7180 was opened to view the cloudera               
manager UI. Then, while installing the           
services all the ports in both the nodes were                 
opened because different services access         



different ports to get the installation           
libraries (Refer point 5 in pitfalls). After             
which, experiments on spark and hadoop           
were done. For this, the specific ports ‘8088’               
and ‘4040’ were opened in the master to               
view the service UI. All the other services in                 
the created cluster will run properly, but in               
order to view the respective service UI, the               
respective ports must be opened for the             
master node. Additionally, all the ports for             
both the master and slave were opened for               
each other to enable communication. 

 

V. Scalability 

In theory, cloud computing allows for           
practically infinite compute resources       
available for scaling any project to its             
required allocation. In practice, however,         
one must always be mindful of bottlenecks,             
there are many. Things to consider are disk               
space per VM, memory per VM, number of               
data nodes, number of jobs, and application             
specific configuration, such as number of           
workers for a spark job. 

Process 
The process of deploying the whole cluster             
model is explained in the points below 

1. An account in apache cloud stack           
(SFU’s cloud infrastructure) was       
created. 

2. A private key file, (in .pem format)             
was created to authenticate ssh         
remote logins to the created VMs 

3. Two separate virtual instances,       
running Ubuntu 16.04 , were created,           
with specifications of 4x2.4 GHz CPU,           
with 16GB memory and 1G network,           
on a 20GB disk drive. 

4. One of these instances is chosen as             
the master node, and “cloudera”         
manager is installed in this machine           
by remotely logging into the VM. 

5. Then the cloudera UI is accessed, and             
both the instances are searched         
through IPs or FQDNs to be included             
in one cluster. 

6. Then, all the necessary packages and           
services are installed to the cluster           
setup. 

7. For each of the services installed, the             
master node and data node are           
specified. 

8. Spark and MapReduce are ran as           
experiments to test the functionality         
of the cluster. 

Experiments 
1. Spark - ​A basic spark program was             

written to to make a spark RDD, and               
print the full RDD by collecting it             
from different worker nodes (1         
executor in this case). The program           
was run setting the number of           
executors and the number of cores to             
1. It was also observed that the master               
node, assigned the work to the one             
data node, which was viewed in the             
spark cluster UI. 

2. MapReduce - ​Then, another basic         
mapreduce program was executed to         
approximate the value of ‘pi’. It was             
also observed that, the name node           
assigned the work to the data node. 

Both the cluster’s UI can be seen below,               
where the work is assigned to the data node. 

 

 



 

Pitfalls and Gotchas 

1. Hostname does not resolve on second vm               
instance - ​‘sudo’ command resulted in           
‘hostname cannot be resolved’. This was           
resolved by editing the /etc/hosts file in the               
host, and setting the proper hostname with             
the appropriate IP address. 

2. Linux IPTables and UFW - ​The cloudera               
manager UI was disabled - citing the reason               
that it was unsafe to access the address. Once                 
the IPv6 tables and the firewall was disabled               
on the VM, it was accessible. 

3. Hosts in bad health during cluster             
installation - ​During the installation of the             
services, both the hosts went into ‘bad             
health’ and became unresponsive. This was           
solved by deleting the       
/var/lib/cloudera-scm-agent/cm_guid file   
and restarting the cloudera agent on both             
the hosts. 

4. Improper installation of Spark (not           
installed on slave) - ​When, the ‘bad-health’             
issue was resolved, unless, the guid file in               
both the hosts are deleted and restarted,             
spark does not get configured in both the               
VMs. 

5. Oozie Sharelib URL not found - ​During               
the installation of Impala Statestore, one           
process tried to access some library folders             
in a specific location that was initially             
inaccessible. Once the port number of the             
location was opened up, the configuration           
was successful. 

6. Cloudera configuration - log files           
exceeding - ​It was found that all activities in                 
the cloudera monitor was logged and the             
size of these log files were increasing at a                 
very rapid pace. Once, the space limit has               
been exceeded, then the service stop           
abruptly since none of the activities can be               
monitored anymore. This issue need further           
study to come up with a reasonable solution. 

7. Running Spark 

--num-executors=1 

--executor-cores=1 

--executor-memory=512m 

By default, the number of executors           
assigned to any spark program is 3. Since the                 
spark cluster only has 1 manager and 1 more                 
executor, the spark program was unable to             
run because it was waiting for additional             
executors while there weren’t any. Hence,           
these parameters were modified as shown           
above to run those spark programs in the               
deployed spark cluster. 

8. Unhealthy due to swappiness - ​This issue               
was reported during the installation of           
services. It was found that the optimal             
swappiness value is from 1 to 10. Hence, 

“sudo sysctl -w vm.swappiness=10” was         
used. 

Conclusion 

The ability to provision virtual machines,           

and deploy an operational cluster is an             
extremely powerful tool in the data science             
toolbox. To master the realm of cloud             
computing is to essentially grant yourself           
limitless computational and storage       
capacities. As Uncle Ben said: “with great             
power comes great responsibility.” Cluster         
configuration is rich with configuration         
options, one must proceed slowly, wisely,           
and with great caution to ensure           
functionality, scalability, and security       
requirements are all met. 


