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Abstract 

 
The archiving of music field recordings is often a tedious and time-consuming            
task, sometimes requiring the listening of hundreds of audio files. Just as any             
repetitive task, the development of an automated classification system could          
greatly help music researchers tackle such a problem more efficiently. This           
project is an attempt at creating a machine model recognizing the presence of             
certain instruments within audio files, by using music information retrieval          
techniques. The focus of the study was on classifying African music field            
recordings, and in particular, three specific sounds were chosen as the basis for             
the experiments: vocals, drums and handclaps. The problem was addressed by           
experimenting and retrieving a specific set of sound signal features (using the            
feature extraction tool MARSYAS) from multiple audio datasets, and then          
comparing the results returned by different classification algorithms. Overall, the          
K Nearest Neighbor (KNN) classification algorithm showed to be better than           
Support Vector Machine (SVM). Further, retrieving features over short         
overlapping segments of a music track proved to be more successful than            
non-overlapping segments and tracks with extended length. However, further         
investigations remain to be conducted to achieve a convincing machine timbre           
recognition system.  
The code is available at: https://github.com/LingboTang/466Team7Music 
 

1   Introduction 
 

1.1   The Problem 
 

Dr. Michael Frishkopf, an ethnomusicology researcher at the University of Alberta has personally             
recorded a large number of field recordings of African music. Dr. Frishkopf requires, for his               
research, that each track be labeled with which instruments are present. Manual annotation of the               
songs is a laborious and time consuming task; thus, it would be greatly beneficial to have an                 



automated system that can label tracks with the instruments they contain. Labeling music with              
which instruments are present is a generalizable problem, a solution which may be useful to               
researchers and practitioners in the future. 
 
The applications of automated instrument recognition span beyond the scope of this problem.             
Consider audio recordings in general, recordings of speeches, conferences, concerts, lectures and            
more, in each case, a recording is often monolithic and lengthy, and requires manual searching to                
find specific points that a user may be interested in. An automated segment classifier would allow                
a user to query such an audio file and automatically be given segments which contain what they                 
are looking for, saving the user the need to manually listen through undesired portions. Another               
practical application is the synergistic potential to be used with search engine technologies.             
Consider the ability to annotate any audio that exists on the Internet, a search engine could then                 
search among annotations. For example, a user could query “‘1980’s’ ‘sitar’ ‘theremin’” and be              
given audio clips that have been labeled as such. The wide range of possible applications               
motivated us to investigate further on this problem. 
 
We began our investigations on the specific problem of classifying 30 second tracks of African               
music, focusing on only three instruments to begin with: claps, vocals, and drums. We chose these                
three because they were the most common labels in the dataset. The task was to label tracks with                  
which instruments they contain, and more precisely, the exact segments which contain particular             
instruments. The first step in applying Machine Learning to such a problem was the ability to                
extract features from audio, secondly, experimenting with various algorithms and parameters           
which maximize the correctness of the classification based on the extracted features. 

 
1.2   Related Work 
 
Music Information Retrieval (MIR) is an emerging field with notable successful applications such             
as Shazam. Shazam is an application which allows users to discover the title and artist of a song                  
from recording a 15 seconds clip of that song. The clip is encoded and sent to Shazam servers and                   
analyzed by it’s spectrogram.[4] The work done by the team at Shazam is a display of the                 
powerful utilization of music information retrieval. Shazam only uses a single feature of music in               
their analysis; intuitively, using more features has the potential of yielding even greater results,              
thus, the inspiration for applying machine learning techniques on an extended set of features. 

 
2   The Environment setup 
 
2.1   The Data 
 
The training data was obtained from the Smithsonian Folkways website[9], from which we             
downloaded all 500 free sample clips from their International library of African Music (ILAM)              
collection. Each clip is exactly 30 seconds in length and is labeled with which instruments it                
contains. As mentioned in the previous section, we focused on vocals, drums and handclaps.  
 
2.2   The Tools 
 
Marsyas (Music Analysis, Retrieval and Synthesis for Audio Signals) is an open source software              
framework for audio processing with specific emphasis on Music Information Retrieval           
applications. It has been designed and written by George Tzanetakis with help from students and               
researchers from around the world.[1] We used Marsyas to extract audio features that can be used                
for machine learning. To use Marsyas to create a feature file, first create a Marsyas collection,                



appending the appropriate labels to each example. Then, use bextract binary file to create a .arff                
file which contains feature values: 

 
  Figure 1-a: Feature Extraction with 

Marsyas 

 
 

 
Figure 1-b: Classification with kea 

 

Marsyas has a built-in machine learning tool called Kea (derived from Weka) which can be used                
to apply classification algorithms on the .arff file. Learning a classifier by SVM with linear kernel                
and 10-fold cross validation can be achieved in Marsyas with the command in Figure 1-b. 
A .arff file can also be used directly with Weka which has many options for visualizing data and                  
experimenting with different classifiers. 
 
2.3   The Features 
 
Zero-Crossing  
Where the sign of the spectrum changes. [1]  
 

Spectral Centroid 
Indicates where the “center of mass” of the spectrum is, and is calculated by the following                
formula: 

  (1)        where A is the amplitude, and i is the bin number.[1] 
 

Spectral Flux 
The euclidean distance of the difference between the magnitude of the short time Fourier              
transform spectrum evaluated at two successive sound frames. This measures how quickly the             
spectrum is changing. [1] 
 

Spectral Roll-off 
A roll-off point is the frequency in which N% of the magnitude distribution is concentrated (N is                 
usually 95). [2] 
 

Mel-Frequency Cepstral Coefficients (MFCC) 
Sounds generated by a human mouth are filtered by the shape of the vocal tract (such as the                  
position of the tongue, or the shape of the lips). This shape determines what sound comes out of                  
the mouth. If we can determine the shape accurately we can get an accurate representation of the                 
phoneme being produced. The vocal tract manifests itself in an envelope and MFCC accurately              
represents this envelope. Computed by grouping the short time Fourier transform points of each              
frame into a set of coefficients by a set of weighting curves with logarithmic and discrete cosine                 
transform. [2]-[3] 
 

Chroma 
Chroma is an attribute of pitch. Pitches contained in the same pitch class have the same chroma. 
A pitch class is set of pitches that are a whole number of octaves apart, for example, all the C                    
notes on a piano are contained in the same pitch class thus share the same chroma. 
 



In our study, we are taking the average values of the features described above over segments of 
sounds. Therefore, the features we used to train classifiers correspond to statistics of each features, 
i.e. the average and the standard deviation. This resulted into a total of 124 features. 

 
3   The Experiments 
 
3.1   Average feature values over 30-seconds tracks, with binary classifiers 
 
The first step was to collect all 500 tracks and their corresponding labels. We transformed all the                 
tracks to WAV format to be compatible with Marsyas, and wrote a script to sort all the tracks into                   
folders with their corresponding labels. For three instruments options there are eight            
combinations, thus the files were sorted into eight folders. We chose to begin experimenting with               
binary classifiers for each respective instrument instead of a multi-class classifier. This required             
sorting the data further into positive and negative instances for each respective instrument. Once              
this was done we were able to extract features using Marsyas, an example of extracting features                
for a drums classifier can be seen in Figure 1-a. 
 
Marsyas extracts features 86 times per second and averages features over an entire audio clip. For                
this reason, our team came to the conclusion that extracting features over an entire 30 second                
length clip will not be sufficient for accurate features. For example, a 30 second track containing                
claps will have less than one second of total aggregate clap time and the features identifying with                 
claps will get washed out from averaging over 30 seconds of other noise. We concluded that a next                  
iteration experiment will require shorter track length. 
 
Using Marsyas’ integrated machine learning, we used our initial data to train a classifier using               
SVM with a linear kernel and testing using 10-fold cross-validation, demonstrated by Figure 1-b.              
We further decided to train another classifier, KNN, to get a comparison between two different               
algorithms. We chose K=11 (11-NN), by following the rule of thumb of taking the square root of                 
the number of features used for training (√124 in our case). The excitement of seeing 98%                
accuracy for classifying vocals quickly faded as it became apparent how skewed our data was. Our                
vocal dataset was 98% positive, resulting in a naive classifier that simply labels all tracks with                
vocals. These results revealed the necessity of a more sophisticated measure of success than just               
accuracy. We began using F1-measure to quantify the success of our models, F1 was sufficient               
because there is not a significant cost difference between false positives and false negatives. The               
initial results suggested also that we must have a more balanced dataset for future iterations of                
experimentation. 

    (2)                           (3) 
 
3.2   Average features over 1-second segments, with binary classifiers 
 
To address the issues mentioned above we chose to split the 30-seconds tracks into 1-second               
chunks and manually label each second with only the instruments contained in that second (which               
took approximately 15 manual hours). The new dataset contained approximately 15,000 tracks            
with less variance and had the advantage of having a more balanced dataset for vocals. 
 



With our new dataset we expected to have a strict increase in F1-measure among all instruments.                
With vocals this was certainly the case. Among claps and drums however, there was a decrease in                 
F1-measure, with drums having only slightly decreased, whereas claps had a significant decrease.             
This result came as a surprise to us and presented inspiration for further investigation. The focus                
was now on claps and how we could improve our results. It became apparent that perhaps in the                  
process of systematically chopping tracks by seconds we may have chopped the audio in the midst                
of a clap, resulting in a partial clap on one chunk and a partial clap on another chunk. 
 
3.3   Average feature values over 1-second overlapping segments, with binary classifiers 
 
If segmenting claps occurred often enough it would give a mis-representation of the features. We               
decided to further expand our dataset into overlapping chunks rather than disjoint chunks. Doing              
so would eliminate the problem while also further reduce the skewness of the data and provide                
more training data. Each new overlapping segment consists of 50% of the 1-sec chunk preceding               
and 50% of the subsequent chunk. Again, these data were manually labeled, which took around 15                
more hours of manual time. This resulted in a new dataset of approximately 30,000 overlapping               
segments, on which we applied the two algorithms for the next iteration of our experiment. 
 
3.4   Average feature values over 1-second overlapping segments, with multi-class classifiers 
 
As a final experiment we chose to train a multiclass classifier using our overlapping data. There                
were 8 classes, representing all combinations of the three labels. With this model we expected a                
high error rate, as the mistake of classifying a chunk that contains vocals and claps as a chunk that                   
contains vocals and drums seemed very likely, along with other similar cases of this sort. 
 
4   Results and Discussion 
 
4.1   Vocals 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-a. F1-Score of vocals using different samples and algorithms 
 

 
Since vocal data is heavily skewed, the classifier adopts a majority class policy and classifies all                
tracks as having vocals, which results in an F1-score of 0 (see figure 4-a.). By creating 1-sec                 
chunks and overlapping chunks from the original data, we obtained more segments not containing              



vocals. As the number of negative samples increases, the data is more balanced; hence the               
F1-Score increased to more than 0.8 for 11-NN, and we see that 11-NN performs better than                
SVM. 
 
Comparing the results for both algorithms between non-overlapping chunks and overlapping           
chunks, we observe a slight increase in performance for the latter overlapping set. 

 
4.2   Drums 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-b. F1-Score of drums using different samples and algorithms 
 
Compared to vocals, drums were not as present in the 30-sec tracks. Hence the data is less skewed,                  
giving comparable performance across the first and the last two experiments. Looking at the              
bar-plots, we again observe that KNN outperforms SVM for each case. The first experiment gave               
a poor performance of around 0.6 for KNN. This is due to the feature values specific to drums                  
being washed out by the other sounds in the whole track. We then observe an improvement for the                  
1-sec segments in the last two experiments, which stands at around 0.7. SVM slightly decreases               
performance from the 30-sec tracks to the 1-sec chunks in the last two experiments. 

 
4.3   Claps 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-c. F1-Score of claps using different samples and algorithms 
 



SVM did well for 30-sec tracks but poorly for 1-sec chunks and overlapping chunks. During its                
training phase, SVM uses hinge loss to balance the weight on more relative data and less relative                 
data. Since its consideration mostly depends on support vectors, it cannot reduce the weight of the                
data which is farther from the hyperplane cluster than we expected. When we split the data into                 
1-sec chunks, we unwillingly generated more data that is irrelevant to the hyperplane which              
weights will be added into the false positive and false negative classifications. 
 
The classification using KNN still gave us reasonably convincing F1-scores, which again reveals             
that KNN is better on small relevant datasets. Regardless of the amount of the data, KNN simply                 
calculated the distance and will only rank the K-th nearest data, so the algorithm ignored most of                 
the irrelevant data during the classification. 
 
We still notice a decrease in performance for KNN between the initial experiment and the second                
experiment. This could be due to claps getting cut off between two chunks therefore not giving the                 
algorithms a clear interpretation of what a clap is. Further, there were very few instances in which                 
there were only claps so the algorithms had to deal with a lot of noise when identifying the                  
specific sound of claps. As in the previous two instrument binary classifiers, we again observe a                
consistent improvement between the non-overlapping chunks in experiment 2 and the overlapping            
ones in experiment 3. 

 
4.4   Multi-class 
 
Overall 11-NN performed better than SVM in all cases. Identifying {Claps} and {Claps,Drums}             
there were few to no cases where those specific situations happened, therefore the learner did not                
have enough to train on, causing low results. When it came to recognizing {Drums} and {Vocals}                
the F1-scores are quite good, this is because in most cases there was usually no other instruments                 
played at that time giving the learner a clear example of what a {Drum} or {Vocal} was. Also,                  
when it came to recognizing that no instruments existed the learner did reasonably well. The               
problem occurred when it tried to classify two or more instruments at a time, this is because when                  
there are vocals being played within a track the vocals are usually the prevailing sound therefore it                 
is obstructing the other sounds causing the learner to not recognize if there are drums or claps in                  
the track.  

 
 
 
 
 
 
 
 
 
 

  
 

 
Figure 4-d. F1-Score of multi-class classifiers using different samples and algorithms 

 
 



4.5   Result summary and example of the model usage 
 
From the previously outlined result, we can say that the method that worked the best is the KNN                  
classification algorithm (K=11), applied to the 30,000 overlapping chunks dataset. In order to             
visualize the result, below is a diagram showing how our classifier performed in recognizing              
instruments within a track: 

 
 
 
 
 
 
 
 
 

Figure 4-e: Ideal classification vs Classification of 11-NN on overlapping chunks [10] 
(Song: Kob'a ntja, I.L.A.M. (1959) South Africa, Lesotho) 

 
The timeline at the bottom represents how our classifier performed at classifying sounds on 1-sec               
chunks. The timeline right above it is how an ideal classification system should perform. As we                
can see, our classifier is still far from giving the desired result. However, by working toward                
obtaining increased performance on the sound classifiers, and working on tighter overlaps of             
shorter length, we could intuitively reach the ideal classification model. 
 
5   Conclusion and Future Work 
 
From the results of our experiments we can conclude that the 11-NN algorithm tended to perform                
better than SVM, and that chunking the data into 1-second segments and overlapping segments              
tended to increase our F1-scores. Overlapping the chunks did do better, but only slightly better in                
most cases. Binary classification performed better than multi-class classifiers in correctly           
recognizing whether or not vocals, drums, and claps are in a sound track.  
 
The work done in this paper is still in its preliminary stages, and things that could be done to                   
advance the results would be:  

- testing with different sampling rates,  
- ensuring the segments are small enough to not miss a clap or a drum sound,  
- expanding to a wider range of instruments,  
- using more features,  
- using larger/more balanced datasets,  
- applying to a general set of music genres. 

 
We hope this study gives an intuition of what can be done, and what is to be done next in order to                      
achieve machine timbre recognition. 
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