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INTRODUCTION

In this project, we were asked to build a Recommender System for Yelp. Yelp

focuses  on  providing  crowd-sourced  business  ratings  and  reviews  for

commercial establishments that we will refer to as items or businesses. We

need to predict the "rating" or "preference" that a Yelp user would give to an

item.

To  be  able  to  do  that  we  needed  to  create  a  Recommender  system.

Recommender System is a well-known and widely used filtering system that

can predict unknown user ratings based on the available historical ratings

given by many users. 

There has been many algorithms established for constructing Recommender

systems.  We  were  free  to  use  any  of  them that  would  create  the  best

recommendations for users of Yelp. The best Recommendation System is the

system which  most  accurately  predicts  how users  will  rate  businesses  in

cases not seen by the algorithm. We were also free to use any programming

language, however we were advised and encouraged to work with Python.

Python  is  widely-used  and  has  many  built-in  libraries  which  are  very

convenient and easy to use in data science.  

APPROACH



Our  original  approach  was  to  use  only  rating  data,  ignoring  any  extra

information like  date and review text.  We tried every algorithm from the

open source recommender systems library Scikit-Surprise, written in Python.

However  we  could  not  achieve  a  good  accuracy  of  our  Recommender

System. This motivated us to try utilizing the text review data. 

For each training example, there is an accompanying text review that the

user  has  written  about  the  business.  By  inspecting  these  reviews  we

discovered that there are many types of businesses, not just restaurants. We

checked on Yelp.com to see the different types of businesses available. We

found  the  predominant  ones  to  be  Restaurants,  Hotels,  Automotive,  and

Beauty/Salon.  Therefore the first thing was to clean our data by clustering

and separating different services from each other. After that we could create

different models for every service separately to be able to predict ratings for

them. 

Once we had four separate train / test sets based on business types, we

again began testing RS algorithms on the sets. At this point we continued to

have poor results. We discovered that the whole time, we had been working

with only about 1/6th of the train data. We assume a faulty download had

taken place. Once we had all the data, we began to get much better results

using algorithms from surprise on the entire dataset.

In order to tune faster with better result, we want to simulate the test set.

We do this  by  finding  the  ratio  between test  set  and train  set,  which  is

7.75%.  Then  we  split  our  train  set  into  1/13  (13  fold).  Since  it  takes

extremely long time to do all 13 folds, we will stop in 2 step (or chosen split

steps) to stop the loop and average the results.  We then choose multiple

parameters and run parallely and score them using this testing technique. If

one param get better result, we then can run more steps to ensure it is not

false positive. 

We then started achieving highly competitive results by just tuning the SVD

matrix  factorization  algorithm provided  by  surprise.  We  continued  to  try

additional techniques. We tried again splitting the datasets by business type

as before, but this did not yield better results than training SVD over the

entire  dataset.  We suppose that  business  type may be one of  the latent
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factors that is learned via the matrix factorization. We also tried ensembling

models by averaging predictions scores, and also taking weighted averages

of predictions, weighted by model performance. No techniques performed as

well as simply tuning and training SVD over the entire dataset.

TECHNIQUES USED AND CHOICES MADE

To split the train data by business type, we first joined the train data and

review data by train_id. Then, for each train example, we use the Natural

Language Processing Toolkit NLTK, a Python library, to tokenize the review,

and check it against a list of keywords for each business type. For example

hotel keywords included ‘hotel’, ‘sleep’, ‘bed’, ‘accomodation’, ect. From this

technique we found that the data was roughly 70% Restaurants, 20% Hotels,

5% Auto, and 5% Beauty.

To separate the test data by business type, we first classified each business

(item) by its business type. To do this, we went through each train set, if a

particular business appears more than twice in a single train set, then we

assign the business to the business type matching that train set. Since there

are many more train examples than businesses, businesses will always show

up more than twice in at least one train set type. Other than data exploration

and clustering, our work horse was the surprise library.

Surprise gives perfect control over experiments. It provides various ready-to-

use  predictions  algorithms  such  as  baseline  algorithms,  neighborhood

methods (k-NN), matrix factorization-based ( SVD, PMF, SVD++, NMF), and

Slope-One,  and  Co-Clustering.  Also,  various  similarity  measures  (cosine,

MSD, pearson…) are built-in. Surprise makes hyper-parameter tuning easy. To

do  that  we  used  GridSearch  class  provided  by  Surprise  library.  Given  a

dictionary of parameters, this class exhaustively tries all the combination of

parameters  and  helps  get  the  best  combination  for  an  accuracy

measurement. 

We found that the SVD algorithm far outperformed the others and we began

pursuing the  optimization  of  the  hyper-parameters  for  this  algorithm.  We

found that a key parameter setting with SVD was the number of factors ie.

the dimensionality of the latent feature matrix. Setting this parameter in the
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range of 4-6 gave best results. This is interesting as it suggests that there

roughly 5 key factors that determine how a user will rate a business.

CONCLUSION

Today there are libraries available for most Data Mining problems. The 

challenge is no longer to implement complex algorithms, but rather to 

understand them so that you are able to use someone else's implementation

to its full potential. 

Matrix factorization is indeed a very powerful tool for building 

recommendation systems. We believe that results could still be improved by 

finding optimal hyper parameters for other algorithms and using an 

ensembling technique.

When obtaining poor results, always question your data first. We were 

working with 1/6th of the train data for most of the semester. We tried so 

many complex techniques to improve our score, when all we needed to do 

was investigate our data source. This was a very valuable lesson that we will 

remember for all time.
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THE CODE

src/ensemble.py

In this file we train every algorithm from surprise, cache the score to be

compared in the future, cache the model, and cache the predictions if they

produce a better cross validation score than the best cached for that model.

It also contains code to average over predictions to produce an ensemble

prediction.

src/ensemble_split.py

Similar to above except trains a separate model for each of the four datasets

split by business type. And then produces predictions of each example in the

test set, using the appropriate model for that business.

src/svd.py

In this file we make it easy to iterate through parameter choices with SVD.

We found this manual approach slightly more efficient than working with grid

search.  This  is  because  of  the  way  we  were  saving  scores  and  best

parameter settings.

src/parameter_search.py

Here we experiment with surprises grid search over parameters.

/notes.py
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This is some exploratory python code. We are counting the number of train

and test examples, number of businesses, number of users ect. This is also

where we join reviews to train data and filter by keywords

data/sep_data.py

This file separates the train and test data into four separate datasets based

on business type. This file got deleted when wiping and re-cloning our repo

since the data directory was in our gitignore.

RESULTS

We managed to get the best RMSE from SVD with parameters as follows:

SVD: 1.29319

       n_factors=4,

        n_epochs=27,

        init_mean=0.0445,

        init_std_dev=0.043,

        lr_bu=0.008,

        lr_bi=0.009,

        lr_pu=0.007,

        lr_qi=0.005,

        reg_bu=0.41,

        reg_bi=0.21,

        reg_pu=0.21,

        reg_qi=0.21,

Ensemble Weighted Average: 1.29324

SVD over separated data: 1.38914
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