
An Analysis of Locking Techniques in Multi-Threaded Programming

Shawn Anderson
Ka Hang Jacky Lok

I. INTRODUCTION

The purpose of this report is to explore the implementation
and performance of three mutual exclusion (MutEx) locking
techniques. MutEx is a critical paradigm in multi-threaded
computing. It allows multiple threads to work with shared
data. It ensures that critical sections of code, such as updating
a shared variable, are not executed by multiple threads
simultaneously, which has the potential to produce undesired
behaviour. The three locking techniques implemented are:
a basic spinlock, an exponential backoff lock, and a queue
lock.

II. BACKGROUND

A. Lock Basics

In the context of this paper, locks are data structures
which are used to maintain knowledge about critical sec-
tions of code. Knowledge which allows threads to work
synchronously on shared data, while maintaining correctness
of tasks. Locks secure Critical Sections (CS) of code, in
which threads operate on shared data. Locks are implemented
using atomic operations. Atomic operations are operations
that are executed transactionally in the sense that they are
completely executed, or not executed at all, ie. they do not
allow interleaving before completion. If a lock serves threads
in the order that they have arrived, it is said to be a First In
First Out (FIFO) lock. When threads are waiting for a lock,
we refer to them as ’spinning’, in the context of this paper,
spinning does not progress a task, it is a form of waiting for
a lock. In other words, busy waiting is not implemented in
the scope of our experiments.

Deadlock is a situation where there exists a cycle of
threads, all waiting on each other to relinquish control of
a lock, resulting in all threads coming to a complete halt
and not making any progress. If a lock is not recursive, then
a deadlock will occur if a thread holding a lock attempts to
grab it’s own lock.

B. Spinlocks

The most simple type of lock is the appropriately named
Test-and-Set(TAS) lock. In the case of a TAS lock, we
instantiate a data structure, which we call my splinlock struct
to represent the lock. This data structure has a lock attribute
which will always be either 0 or 1. In the TAS method, if
lock is set to 0, then the critical section is free to be entered,
if the lock is 1, then the lock is held by another thread, thus
we must spin (keep checking the lock). Once the holder of

Simon Fraser University

the lock has exited the critical section, it will set the lock
back to zero, thus the next thread to check the lock will be
able to obtain it and enter the critical section.

A key component of the spinlock is an atomic test-and-
set(tas) operation. A tas operation allows a thread to check
the value of the lock, and, if the lock is free, lock the lock, all
in one atomic operation. This operation is atomic, meaning
it either completes or does not, it can not be interleaved
with any other operations. This tas operation is essential for
the synchronization of the TAS method, it ensures that two
threads do not both check and lock the lock at the same time.

There is a cost for using atomic operations. They use
excessive clock cycles, compared to their non-atomic ana-
logues, due to their increased complexity. However, there
is a more profound issue that must be addressed with the
tas operation in the TAS method. This issue arises from the
concept of cache coherence, which reduces bus access to
memory by accumulating data changes in the cache, only
accessing memory when necessary.

If threads waiting for the lock are all spinning on checking
the lock, then they are invalidating cache lines. Spinners are
missing the cache, thus going to the bus. When a thread
goes to release a lock it will be delayed behind spinners.
These issues result in excessive bus bandwidth by spinning
threads and increased release/acquire latency for the lock.
This problem is solved by the implementation of the Test-
and-Test-and-Set (TTAS) lock.

The TTAS lock is nearly identical to TAS, with an
additional ’Lurking’ stage. In the lurking stage, the thread
spins on a simple read of the lock rather than a tas operation
on the lock. The key concept here is that a simple read does
not invalidate cache lines. A lurking thread will check if a
lock ’looks’ free. When the lock looks free, the thread will
enter the ’Pouncing’ stage, in which it calls tas to acquire the
lock, if tas fails, it returns to lurking phase. The pouncing
stage is identical to the TAS implementation, thus TTAS is
simply TAS, wrapped in an additional loop which reads the
lock.

In practice, TTAS performs much better than TAS, es-
pecially as the number of threads grows. However, it has
it’s own issue related to cache coherence. When the lock is
released, all lurking threads will pounce on the lock that
now appears free. This creates an ’invalidation storm’ in
which every lurking thread sequentially reads that the lock is
free, and then performs a tas operation, invalidating the other
threads caches. This invalidation storm problem is resolved
by the Exponential Backoff Lock.



C. Exponential Backoff Locks

The Exponential Backoff Lock solves the cache coherency
invalidation issues with a simple and elegant solution. Start
with the TTAS implementation, but add in the concept of
backoff. That is, spin until the lock appears free. If the lock
appears free, try to grab the lock with tas. If the tas fails,
then it is obvious that there is high contention for the lock.
In this case, go to sleep for a random amount of time. This
randomness essentially enforces an ordering of the threads
competing for the lock, since each thread will go to sleep
for a different amount of time. Thus we have eliminated the
invalidation storm problem.

Our implementation is exponential, that is, each time a
thread consecutively finds that a lock is under hi contention,
it will double the amount of time that it sleeps for. By doing
this, lock attempts become more and more spaced out, re-
sulting in minimal cache invalidations. Exponential Backoff
Lock has the highest performance in our experiments, even
outperforming the pthread mutext lock implementation.

D. Queue Locks

There are multiple types of queue locks, the one that we
are experimenting is Ticket Lock[1]. Our implementation is
inspired by the pseudo code presented on the wikipidia page.
However, our implementation uses the Compare-and-Swap
(cas) atomic operation instead of the Fetch and Inc atomic
operation. Our ticket lock works exactly as a ticket system
when you go to a deli, or to SFU fincancial services. The
lock maintains two counters: now-serving, and next-ticket.
Next-ticket is always equal or greater to now-serving. When
a thread makes a request to access the critical section, it uses
the cas atomic operation to take a ticket, and increment the
next-ticket attribute, all in an atomic operation. The atomicity
ensure that no two threads get the same ticket number, and
that all valid tickets are held by some thread. A thread
waiting on the critical section will spin until the now-serving
attribute of the lock is equal to the ticket number that the
thread possesses.

Queue lock is not the most efficient of the locks. It does
however, posses some potentially desirable qualities. A queue
lock guarantees FIFO, which introduces a notion of fairness
to acquiring the lock. FIFO also eliminates the possibility
of starvation, which is when some thread is never able to
acquire the lock.

E. Recursively Aware Locks

Our lock implementations are recursively aware. This
means that if a thread attempts to lock a lock that it is
already holding, it will not deadlock itself. Instead, it will
require and additional unlock to finally release the lock. This
is implemented by adding a lock owner attribute to our lock
data structure, as well as changing the binary lock attribute
to an integer counter attribute. So a lock is aware of its
current holder, if that holder attempts to lock the lock again,
the counter is increased. When a thread unlocks the lock,
the counter is decreased. When the counter goes to zero, the

lock is released, thus a thread must unlock as many times as
it has locked to release the lock.‘’

III. EVALUATION

To evaluate the performance of the locks, a test is devised.
In this test there exists a counter which is initialized to zero.
Each thread increments this counter a set number of times.
Threads are running concurrently, thus the process of incre-
menting the counter becomes a critical section. Incrementing
a counter is a critical section because increment is not an
atomic operation. If this test is run with no locks around
the increment, than an incorrect final count is produced. If
a faulty lock is used to secure the critical section, than a an
incorrect final count is produced. Thus correctness was the
first goal of implementation.

Once locks where shown to be implemented correctly, we
were able to run our test with varying parameters to evaluate
the performance of our locks in different scenarios. These
parameters include: number of threads, amount of work done
in the critical section, and amount of work done outside of
the critical section.

A. Experiment 1: Thread Numbers

In this experiment we test how the locks perform as the
number of threads increases. We hold amount of work inside
CS, and amount of work outside CS both constant at 300.
Number of threads is increased exponentially in each trial.

Fig. 1. Thread Test: Number of Threads vs Time(ms)

During the experiment, we found that one of the locks
takes exponentially more time than the others when increased
the threads, as seen in Fig. 1. Figure 2. shows a graph without
heap lock’s time at thread 16, and it is obvious that most of
the lock just works as expected except heap lock. We are
curious about the reasons and conditions that lead to this
problems, so we have done varies of tests against heap lock,
such as, increase the threads from 1 to 11, increasing other
parameters, checking the implementations. And we found
that this would only happen when the threads are more than
eight, which is the hardware threads of the lab computer!
After research, we found that the cause of this is ”Priority
inversion”. Each hardware thread has its only priority, but in
heap lock, we give each thread a ticket and let them wait until
their round, which may eventually put the higher priority task
to the queue dues causing the priority inversion problem.



This problem could be solved if we yield and calling thread
to relinquish the CPU when the job is in the queue, which
can be done by calling SCHED YIELD on the while loop.

Fig. 2. Thread Test: Number of Threads vs Time(ms) excluded heaplock

B. Experiment 2: Outer Loops

In this experiment we test how the locks perform as the
number of work done outside the critical section or the outer
loop in short. We hold amount of work inside CS constant
at 300 and number of threads at 8.

Fig. 3. Outer Loop Test: Number of work done outside critical section vs
Time(ms)

The graph shows in average, heap lock takes more time
than other lock when work is done outside the critical section
increase. However, the figure also matches our assumption
that increasing the work outside the critical section would not
consume much time since the job could be done in parallel.l.

C. Experiment 3: Inner Loops

In this experiment we test how the locks perform as the
number of work done inside the critical section or the inner
loop in short. We hold amount of work outside CS constant
at 300 and number of threads at 8.

We think that increasing the work done inside the critical
section would increase the work time substantially. The
among of time used in Inner Loop is sequential, meaning
that each thread would need to wait for other threads to
finish that amount of work. Figure 4 shows us that it takes
way more time than increasing the outer loop.

Fig. 4. Inner Loop Test: Number of work done inside critical section vs
Time(ms)

D. Experiment 4: Iterations

In this experiment we test how the locks perform as the
number of iteration increases. We hold amount of work inside
CS, and amount of work outside CS both constant at 300 and
number of threads at 8.

Fig. 5. Thread Test: Number of Iterations vs Time(ms)

Increasing iterations will increase the number of lock
cycles hence increase even more time. Figure 5 shows the
time used when iterations increases. The average time use is
more than outer loops, therefore proved our assumption.

IV. CONCLUSIONS

When we are dealing with multi-threading, we need to
be aware of many things, such as lock efficiency, deadlock,
priority, and hardware thread, and each of them may lead
to some unexpected behavior. We think that knowing more
about hardware operating cycle would help us to excel multi-
threading. And we would continue to explore more technique
about locks in the future.

ACKNOWLEDGMENT

Thank you to the instructor Ryan Shea for clearly defining
these concepts in lab and lecture, as well as producing high
quality slided which document these concepts.

REFERENCES

[1] https://en.wikipedia.org/wiki/Ticket lock
[2] https://sfucloud.ca/cmpt-756/wp-content/uploads/2018/01/multi-

core.pdf


