Constructing a Scalable System for Identifying
Arbitrage in Cryptocurrency and Foreign Exchange
Markets

Shawn Anderson
shawn_anderson@sfu.ca

Vincent Chiu
vlcd4@sfu.ca

Ka Hang Jacky Lok
khlok@sfu.ca

Abstract

Arbitrage is an opportunity for profitability which arises from a discrepancy in the
price of an asset across markets. The act of exploiting arbitrage results in the set-
tlement of the markets, and an equilibrium price of the asset. Arbitrage in the do-
main of Foreign Currency Exchange is well explored and documented [citation],
thus opportunity is limited to experienced financial players with access to high
power computing and extremely low latency. We explore a new frontier in arbi-
trage identification, foreign exchange markets in conjunction with cryptocurrency
markets. Cryptocurrency markets can be thought of as proxy foreign exchange
markets as users are able to convert one fiat currency to another with one or more
intermediary cryptocurrency transactions. In comparing foreign exchange rates
from traditional markets to cryptocurrency proxy markets, we identify that signif-
icant arbitrage opportunity exists. We propose a scalable system that consumes
and stores market data, making it possible to observe both current and historical
arbitrage opportunities. In addition, our system identifies optimal currency trade
paths to yield maximal arbitrage profitability.

1 Introduction

In the emergence of disruptive technologies there is an abundance of uncertainty and volatility.
Cryptocurrencies are disrupting traditional financial paradigms at an alarming rate, resulting in ripe
opportunities for profit and discovery. In such an uncertain time, data can reveal meaningful under-
lying patterns to be exploited. Arbitrage is such a pattern that can be discovered by acquiring and
analyzing the appropriate data. The purpose of this project is to identify the existence of arbitrage
by comparing exchange rates from foreign exchange markets to exchange rates in cryptocurrency
markets, using an intermediary cryptocurrency.

In addition to identifying real time arbitrage opportunity, we are interested in capturing market data
to be saved for historical analysis. Historical analysis is critical as it provides a window to deeper
insights. For example, we hypothesize that high volatility in the price of Bitcoin could be a factor
in currency price discrepancies across markets. The importance of historical data necessitates a
Big Data approach to this problem. Data is saved in a scalable manner. System architecture is
constructed with modularity using Big Data tools.

2 Methodology

Cryptocurrency and National Currency
Arbitrage
ARCHITECTURE ‘ CURRENT APPROACH

Crontab pull data every 1 min

FORGE ﬂ o

Kraken

‘ Foreign Exchange | ‘ Cryptocurrency ‘ ‘ Cryptocurrency ‘

Web Crawler Web Crawler Web Crawler Ajax data request

in Period

%

1

CADUSD. json kraken_data.json book_data.json

WebServer

Aggregate Data by
Time

e
Cassandra | Find Best
Transaction

Figure 1: High level system architecture

Archive file
after read

Send Request Response prediction

Market data is extracted from one foreign exchange API and two cryptocurrency exchange API’s.
Data is aggregated and loaded into a Cassandra database in batch processes using Apache Spark. We
performed analysis, machine learning, and arbitrage identification using Pyspark. We built a web
application using Django, which connects to the Casandra database, allowing us to construct object
relational querysets. We expose our data in JSON format via a rest API. We then visualize the data
in real time using Java Script with ajax requests and Baidu Echarts [6] for visualization.

A virtual environment was setup using SFU computing resources in order to have a working envi-
ronment where components of the system can be integrated. Access to a virtual environment allows
all developers to work collaboratively in a remote space. Root privileges allow agile customization
of software stacks and instant installation of desired software packages. We found that such an en-
vironment is imperative to the modern development paradigm of bootstrapping existing systems to
iterate quickly, never re-inventing the wheel. In addition to the dedicated virtual environment, we
leveraged the instructional computing cluster available for SFU Big Data students to run Apache
Spark and Cassandra.

2.1 Extracting Market Data

In order to extract market data from multiple places, three stand-alone programs are constructed
to collect data simultaneously. Each program downloads data from a web API, converts raw data
into JSON format, then saves it into a pre-defined location. Cryptocurrency data is extracted with
the help of a python API wrapper for crypto-exchanges called CCS [3]. Cypto-exchange data is
collected from Kraken[4] and Bitfinix[2]]. Foreign exchange data is pulled from Forex][/1]]

We wrote a script which made use of a library called CCS to pull data from the Kraken and Bitfinix
API. We also wrote a script to pull foreign exchange rate data from Forex. A Cron job was also used
to automate data collection using these scripts.

The cryptocurrency data captures order book information between all trade pairs composed of USD,
CAD, Bitcoin (BTC), Etherium (ETH), and various other currencies and cryptocurrencies. The
foreign exchange data captures transactional information between US Dollars (USD) and Canadian
Dollars (CAD).

2.2 Data Storage

After we extract the data we join the data and save it into Cassandra. Cassandra is a scalable database
that will scale for our future plans of accumulating very large datasets. Joining the data beforehand
would avoid the query and huge join that we have implemented in run time.

2.3 Analysis

We have constructed processing and analysis programs with Pyspark. One program converts raw
market data into arbitrage information. One program applies machine learning in order to predict
price changes and future arbitrage opportunities.

We did linear regression and got an 72 of 0.75 with timestamp as the feature and the asking price
of bitcoin in CAD as the target variable. When outliers were removed we got an 72 of around 0.54.
We speculate that this is because the price of bitcoin was monotonically increasing during the time
that collected our data. According to efficient market hypothesis, at any given moment in time,
the current price is already reflective of all known information about a particular investment asset.
Therefore historical prices do not affect future prices and it should not make sense to use time as a
feature to predict price. However, due to the monotically increasing nature of Bitcoin’s price, we
believe that our linear regression model which uses the asking price of bitcoin as the target variable
and the timestamp as the feature is justified. We used Spark ML for this. We also did Spark SQL
operations on our tables to calculate arbitrage profit by multiplying various exchange rates together.

2.4 Web Application

In order to visualize and interact with our results we chose to use use the Django web framework,
which is implemented in Python. Django connects to a database backend in order to expose an
object-relational api for data queries. We use django-cassandra-engine[§]] as a driver to connect
Django to our Cassandra database. From Django we expose rest API nodes for ticker information,
order book information, and trade sequence information.

Trade sequence information is computed in real time from a spark job which aggregates data from
the database. We are able to achieve this by leaving a spark context session open, running on the
cluster. Jobs are queued and executed remotely using spark-celery[/7]] with a RabbitMQ backend[10].

Visualization is implemented in JavaScript using the Baidu Echarts API[6] for charts. Data is up-
dated in real time via AJAX calls to REST framework URLS. Our team designed the layout for the
dashboard using HTML with Bootstrap for CSS. Some styling was adapted from an example by
Pablo Garcia [9]).

We have charts that show USD to CAD exchange rate vs time, USD to CAD through Bitcoin ex-
change rate vs time, and a chart which showed these 2 rates superimposed on each other. We have a
fourth chart that displays the difference in exchange rates, an indicator of arbitrage magnitude. We
also have a real time feed of optimal trade sequences. Trade sequences with profit ratio above 1.0
are profitable, others can be ignored.

3 Results

Significant arbitrage opportunity is observed. However, this model does not take transaction fees
into account. Kraken has 0 fees provided that you spend over 10,000,000 on their exchange in the
last 30 days. [3]

BThe Arbiters Pair ~

Exchange Rate Through Crypto-Currency Foreign Exchange Rate
USD/CAD USD/CAD
0.7815

Figure 2: A visualization of exchange rates and architecture

cad->btc at usd->btc at usd->cad at

$10607.8 $8204.3 $1.2810 Bz SRR
cad->btc at usd->btc at usd->cad at
$10607.8 $8204.3 $1.2810 = SEREEAREY
cad->btc at usd->btc at usd->cad at

$10607.9 $8192.7 $1.2803 OEEED | CEERDIEE

cad->btc at usd->btc at usd->cad at
$10607.9 $8192.7 $1.2803 0.9888 $39551.6251

cad->btc at usd->btc at usd->cad at
$10695.9 $8216.5 $1.2814

0.9844 $39375.6593

cad->btc at usd->btc at usd->cad at
$10695.9 $8216.5 $1.2814 QR ERRVEEEE
cad->btc at usd->btc at usd->cad at

$10699.7 $8204.6 $1.2802 BEBT §392500228

Figure 3: Real time transaction sequences for arbitrage

3.1 Challenges Faced

We found that the bottleneck for progress was generating a shared vision of what we where creat-
ing. It was difficult to specify in language what we intended to construct, resulting in a lack of a
shared vision. Project specifications became implicit, intuitive, and incongruent. We overcame this
challenge by having one team mate take charge, assigning well defined tasks to the other members.

More time was invested in the front-end than should have been. It quickly became overly compli-
cated when we chose to use unnecessary technologies like React and WebPack. A lot of time was
spent configuring and trying to work with these tools. Eventually we scrapped them and went with

a much simpler front end stack. After choosing to just use Django, with JavaScript and AJAX calls,
we progressed quickly.

At first we would like to try RabbitMQ instead of Kafka since we have never used it the class (but
was mentioned). But soon after we have installed RabbitMQ server and tested. We found that we
need to implement Socket Stream which may consume most our time to develop. Then we switched
out focus to Kafka. When implementing Kafka, everything went well until we found that structured
spark stream doest not support stream - “Any kind of joins between two streaming Datasets is not
yet supported.” As the result, we found that we were way behind schedule and we have to give up
the DStream join and switch to a more stable and easy way: Schedule job and move file.

3.2 Future Work

Completion of the system architecture involves replacing batch processing with streaming. Data
consumption will be increased to more cryptocurrency pairs, deeper order books, and data from
more exchanges. With such additional data, we believe that we will be able to optimize arbitrage
identification in order to find maximal profitable opportunities. In addition, we would like to im-
plement an automated trade bot using exchange private keys. The bot would automatically seize
profitable trade sequences, thus generating revenue.

Cryptocurrency and National Currency
Arbitrage
ARCHITECTURE FUTURE APPROACH

User Interface
Web
Kraken (web page)

Web Crawler Web 10 Stream Request for
Data Prediction

Cryptocurrency
& Book Data

FX
& Book Data
JSON
Stream

JSON
Stream

WebServer

|

Spark Stream Join

Response prediction Send Request
and results

‘ Find Best Transaction |—>| Trade Excutor

Use ML to improve accuracy
A 4
Cassandra Online Training
Train and save ML Model

model in period

Figure 4: Future system architecture

4 Conclusion

We have constructed a highly scalable system which is capable of identifying arbitrage of cryp-
tocurrency and foreign exchange markets. We have created a user friendly UI that allows the user to

identify the best trade sequence for making money at a given point in time. We conclude that given
0 exchange fees, it it is possible to make money through arbitrage. our system could be scaled up to
ingest and process a large amount of data. We envision expanding our project to encompass every
cryptocurrency exchange, cryptocurrency pair and foreign market exchange.

Beyond discovering the existence of arbitrage, we are interested in investigating it’s behavior over
time. We maintain the hypothesis that high arbitrage opportunities, as we have seen are correlated
with high volatility in cryptocurrency prices, as we were fortunate to observe during the time the
data was collected.

We have experimented with many new technologies during this project, we have learned a lot and
had a lot of fun. Thank you for taking the time to read this report.

5 How to Run

git clone git@csil—gitl.cs.surrey.sfu.ca:BigDataProject/brainstorm. git
cd brainstorm/webserver/

source ../django—react/venv/bin/activate

python manage.py runserver

References

[1] Iforge.
[2] Bitfinix.
[3] Crypto currency stocks.
[4] Kraken.
[5] Kraken fees.
[6] Baidu. Baidu echarts.
[7] Greg Baker. Spark celery.
[8] Rafa Furmaski. Django cassandra engine.
[9] Pablo Garca. css.
[10] Pivotal Software. Rabbitmgq.

	Introduction
	Methodology
	Extracting Market Data
	Data Storage
	Analysis
	Web Application

	Results
	Challenges Faced
	Future Work

	Conclusion
	How to Run

