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Abstract

EEG signals are a useful tool for classifying various brain activities. Former1

studies have been conducted to use EEG data to classify subjects into physical2

states such as "movement" or "rest" and have been very successful at doing so.3

Such classification is applicable to various technologies such as artificial limbs4

and alternative human-computer interfaces. Responsiveness is a vital aspect of5

these technologies, and thus there is a need for more than just classification but6

for prediction. In this study we explore the use of Hidden Markov Models in7

combination with Electroencephalography (EEG) data to produce a system capable8

of performing prediction of limb movement.9

1 Introduction10

Brain-Computer Interface (BCI) systems are emerging technologies which infer commands from11

a users brain wave, by placing electrodes on key points of the head. As a non-intrusive method of12

human-computer interaction, they appeal to persons that may suffer from certain disabilities. In13

particular, they offer a machine control mechanism which does not requires the use of limbs or fine14

motor skills.15

The inspiration for this problem is the work done by Gudino-Mendoza and Antelis [4] as they come to16

the conclusion that movement intention can be detected up to 1.5 seconds before movement execution.17

Electroencephalograms are a key and fundamental tool in today’s medicine for performing various18

disease diagnoses and real-time monitoring of patient’s heart conditions. These signals can also be19

used to map various brain activities while performing physical or mental tasks.20

1.1 Hidden Markov Model (HMM)21

A Hidden Markov Model is a graphical model which is used to model phenomena in which different22

states of the model will produce different outcome distributions, but the state is hidden from the23

observer. For example consider the idiomatic casino example, in which there are two visually identical24

dice, one of which is biased, and the other is not. Given a series of dice rolls, the observer must25

guess which dice was used to make these rolls. For each iteration there is a chance that the roller has26

transitioned to the other die. In this case, the dice states are hidden from the observer and the dice27

rolls are the observable values. Natural questions arise such as can the observer conclude how many28

states there are? Can the observer compute the most likely sequence of hidden states based on his29

observations?30

The motivation behind choosing to use a graphical model such as a HMM over more traditional31

Machine Learning techniques is the temporal information utilized by the transition matrix. Consider32

classifying a single time-step of a subject as rest or movement based on their EEG output, this is33

certainly possible, but consider that now you are also aware that in the subjects previous time-step34

they were in rest. They are now much more likely to be in rest at this moment as well. Indeed the35

transition matrix of an HMM translates nicely to the transitional nature of physical movement.36



There are three basic problems in regards to HMMs [1] (i) Given a series of observations and a37

specified HMM, compute the probability of observing that sequence given the parameters of your38

HMM. (ii) Given a series of observations and an HMM, compute the highest likelihood state sequence39

that will have generated the observations. (iii) Given a series of observations, adjust the parameters40

of your model to better fit the observations (Learning).41

In experiment 1 we train different HMM’s for rest, intention, left-arm and right arm movement and42

use (i) to choose the HMM which most likely produce the given observations. In experiment 2 we43

train a single HMM and use (ii) to classify the most likely state sequence given the observations,44

where the states are explicitly defined as rest, movement, and intention. In both cases we are using45

(iii) to generate out models from the data.46

1.2 The Task47

Current work has confirmed the ability to identify, using EEG signals, when a subject transitions48

from rest to movement[4]. Our task is to further this technology by introducing a third state, intention,49

that directly precedes movement, and build a model that can accurately identify this state. We do this50

by introducing an artificial label in our trial data, that is the intention label. Time-steps preceding the51

initiation of movement by a fixed intention length window are declared as intention.52

For experiment one the learning task is to produce multiple models, one for each physical state.53

For example we wish to generate a rest HMM which represents the transitional and observational54

tendencies of rest, and a similar model for intention, left and right arm movement. Then, classification55

becomes selecting the model which produces the highest likelihood of generating the observations at56

a segment of each trial. Thus the performance task is classifying segments in the signal correctly.57

For experiment two the learning task is to produce a single HMM with precisely four hidden states,58

one for rest, intention, left and right arm movement. Then, given a trial, the HMM will output59

the most likely sequence of hidden states which would produce such observations. In this case we60

are evaluating accuracy over the entire trial, considering for every window whether the HMM has61

correctly classified the hidden state.62

1.3 Related Work63

In similar work, significant event-related de-synchronization was found in the motor-related alpha64

and beta frequency bands in the moments preceding movement[4]. Implies were that intention can be65

detected approximately 1.5s before movement execution onset. This result could be used in real time66

to trigger an assistant device for active motor rehabilitation therapy. Intention was detected in 78% of67

trials. This work was done using an SVM classification.68

In relevant studies [6] the majority of tasks have been experimenting with methods for classifications69

and extraction of Motor Imagery. Motor Imagery corresponds to the mental state of an individual70

while performing an action. Feature selection for classification of EEG signals can be achieved71

with strong results. In this experiment we go beyond classifications to create a system capable of72

predicting movement intention of a person based on signal readings from a EEG input.73

2 The Study74

Figure 1: EEG Electrode Placement

Both experiments we conducted are based on75

the same data source from a single study and a76

set of open source tools for Matlab.77

2.1 Observations78

The data we used is the same data-set used in79

[4]. It consists of 18 subjects with 96 trials each.80

A single trial consists of a subject sitting com-81

fortably on a chair with their arms resting. A82

screen was placed in front of them and offers83

visual cues to guide them through the experi-84
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ment. The first cue showed the text ’relax’ for85

three seconds, and participants were asked to86

not imagine or execute any movement at this87

time. The second cue showed an arrow pointing88

either left or right. The second cue lasts 12 sec-89

onds and participants were asked to move the90

corresponding arm towards the middle of the91

screen, not immediately, but any time they feel like it after 5 seconds without counting in their head.92

Immediately after moving, participants return their arm to the chair and a ’rest’ cue is shown on the93

screen (See Figure 2). Participants were all able-bodied right-handed subjects without diagnosis of94

neurological nor motor disease.95

2.2 The Data96

Figure 2: Initial Trial Data

During the trials, EEG signals were recorded97

using 21 electrodes, positioned according to the98

10/10 international electrode location system.99

Trials were trimmed from the presentation of100

the first cue to the presentation of the third cue.101

The timeline of a trial is then remapped such that102

movement begins at time t = 0 and the intention103

phase is 1.5 seconds preceding movement. That104

is the intention phase consists of time t ∈ [−1.5, 0] and the rest phase consists of time t < −1.5 .(see105

figure 3).106

After the performed pre-processing, the data we are working with is 18 subjects, 96 trials each and 9107

electrodes of interest, that is F3, F4, Fz, C3, C4, Cz, P3, P4 and Pz. This results in 9 input signals for108

each trial, sampled at 256 Hz.109

2.3 The Tools110

Figure 3: Cropped And Labeled Data

For the programming segments of the exper-111

iments we resourced an open source library112

PMTK3[9] for use with Matlab to perform our113

tasks.114

The library has a vast set of tools including de-115

cent support for latent variable models such as116

Hidden Markov Networks. For HMMs specif-117

ically inference was performed by using the118

forward-backward algorithm to compute pos-119

terior marginals of all hidden state variables.120

For sequence prediction, the Viterbi algorithm121

was used to predict the most likely sequence of122

hidden states given a set of observed data.123

3 Experiment One - Multiple HMM’s124

3.1 The Motivation125

In experiment one we utilize an HMM’s ability to give the probability of producing a particular126

sequence of observations given the model parameters. The idea is to train a separate HMM for each127

segment of trials i.e. rest, intention, left-arm, right-arm and one for general movement. Then, in128

classification, given a series of observations with hidden labels, we can compute the likelihood for129

each HMM to produce such a sequence and choose the model which produces the highest likelihood.130

The movement HMM is not used in our general classification, but for a separate statistic, evaluating131

its performance solely against the rest HMM.132

To be more precise, suppose we are testing the accuracy of our models on a test trial. We take133

a single window of observations and compute the likelihood of that sequence being produced by134
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the rest, intention, left-arm and right-arm HMMs. If the window is from the rest phase of a trial,135

and the likelihood produced by the rest HMM is the highest, then our models have produced a136

correct classification. In the case of the movement HMM, during a movement phase, we take the137

log-likelihood of both the movement and rest HMM, and in the case that the movement HMM is more138

likely, we classify that as a success. Therefore, the movement HMM is only involved in evaluating139

false negatives.140

3.2 Windowing141

Classification of a sequence of observations is done by comparing the likelihoods for each model142

to produce such a sequence. This raises the question, what is the optimal observation sequence143

length? At one extreme, we have the entire trial as the window, which incorrectly groups all states144

between which we are trying to discriminate. At the other extreme, classifying a single observation at145

a single time-step does not make sense as it disregards all transitional information. Hence, the optimal146

sequence length is somewhere within the range of [1, n] where n is the number of observations in a147

given trial. We refer to this length as the window size. An optimal window size is not known and is148

thus another hyperparameter in our experiment that we investigate over a range. The range is softly149

related to the sample frequency (256 Hz), and the brain frequencies of interest (5-40), as a window150

must be long enough to sample multiple periods of any of these frequencies. Another consideration151

in choosing a window size that is the length of the defined intention window before movement, as the152

intention segment should consist of multiple windows.153

3.3 Hidden States154

Since we are using a separate HMM for each physical state, we are making the assumption that155

there are hidden states within each of them. It is possible, as an example, that left arm movement156

is composed of 3 phases, Acceleration, Stop, and Deceleration.These states are not observed, nor157

do we have labels for them and as such, we vary the number of hidden states as a parameter in our158

experiment to optimize our results.159

3.4 Process160

3.4.1 HMM Training161

EEG signals are unique to each person, therefore we are unable to train one HMM for each patient162

using all of their data. Thus for each subject, a new experiment is performed. For each subject we163

have 96 trials, and randomly split the data into 80% (76) training data and 20% (20) test data. For164

each trial in the training data, we split it further into rest, intent, left-arm, right-arm, and movement165

(both left and right arm) blocks. Thus we were left with 76 sequences of movement, rest, intent, and166

36 sequences of left-arm and right-arm movement for training. The test data remains intact as 20167

trials with rest, intent, and single arm movement.168

In order to train each HMM, we feed it the raw EEG training sequences to which it corresponds. For169

example, the left-arm HMM received the 36 sequences of left arm movement, and the movement170

HMM received both the left-arm and right arm sequences. The HMMs were trained using PMTK3’s171

hmmFit function which takes in all of the training trials, the number of states (which we varied) and172

the type of HMM, in our case Gaussian, and applies the training data to the Expectation Maximization173

algorithm to best fit the data.174

3.4.2 Evaluation175

As mentioned, since each person’s brain signal is unique, we performed the experiment for each176

patient. We grouped the results by taking the average. That is, for each of the 18 patients we trained177

separate HMMs, recorded the accuracy for each HMM and took the average. Every patient had 20178

test trials, which we split up into rest, intent and movement sections. We classified rest sections as179

any pre-movement sequence, intent sections as the windows before movement within the intention180

length parameter, and left or right arm movement based on the labels. At each window, we take the181

log-likelihood from the Rest, Intent, Left-Arm and Right-Arm HMM using PMTK3’s hmmLogProb182

function, and our classification is the HMM with the highest likelihood (See Figure 4). Therefore183
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at chance, we would expect 25% accuracy and in the case of the Movement HMM, since we only184

measured false negatives at chance we would expect 50% accuracy.185

Figure 4: Five Separate HMMs

3.4.3 Modification186

Using the same training methodology, we tried to put the HMMs in a hierarchy (See Figure 5). Under187

the assumption that the biggest difference in brain signals is between pre-movement and movement,188

we used the rest HMM and movement HMM to classify a signal. If the signal was deemed to be rest,189

we compared rest against intent and made taking the argmax(intent, rest) as the classification. On the190

other hand, if the signal was deemed to be movement, our classification was the argmax(left-arm,191

right-arm).192

Figure 5: HMM Hierarchy

3.5 Results193

3.5.1 Iteration One194

In the original iteration of the experiment, we varied the number of hidden states n, intent length L
and window size w within

n ∈ {2, 3, 4}, L ∈ {32, 64, 128}, w ∈ {16, 32, 64, 128}

with the added constraint that window size must be smaller than intent size. In this case, the window195

size and intention length are in the number of time-steps, sampled at 256Hz, thus an intention length196

of 64 is equivalent to 64
256 = 1

4seconds. The results are shown below as the highest average accuracy,197

found with n = 3, L = 128, w = 64.198

Rest Intent Left Arm Right Arm Movement
66.4% 47.28 % 37.05 % 81.23 % 52.15 %199
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We believe that the most striking result of our experiment is the difference between right arm and200

left arm accuracy. Though we are unsure of the true cause, it is possible that the handedness of201

the participant plays an important role in this outcome - especially since all of our participants are202

right-handed. It is important to reiterate that our assignment of left and right arm is arbitrary and203

could potentially be that left-arm accuracy was 81.23 %.204

In this case, the movement accuracy is solely compared against rest, and thus with an accuracy of205

52%, it is at the chance level. It is most likely that our model did not capture the proper distinctions206

between movement and rest, and it would be wise to further investigate this before claiming that brain207

signals from individual arm movements differ drastically. Because 52 % accuracy was not the best208

accuracy on movement we achieved, we thought it would still be worthwhile running the modified209

experiment to see if we would achieve better results.210

On the other hand, the rest result of 66.4% is significantly above the chance level. It is possible that211

because the rest section had by far the most data, the Gaussian distributions had tighter curves and212

produced better log-likelihoods as a result. This could be verified by adapting the data-set to have213

equal length movement and rest sections.214

3.5.2 Iteration Two215

In the modified iteration of the experiment, keeping the same restrictions and format as before, we
fixed hidden states n, intent length L and window size w within

n = 3, L ∈ {64, 128, 256, 512}, w ∈ {64, 128}

We found that the best average results were found with n = 3, L = 512, w = 64.216

Rest Intent Left Arm Right Arm Movement
70.74% 22.53 % 32.43 % 63.65 % 50.29 %217

We see a lot of the same patterns here, such as approximately two thirds accuracy for rest, ap-218

proximately double accuracy for right-arm over left arm, and chance accuracy for movement. The219

important distinction is that intention accuracy significantly drops, and below chance. It would then220

follow that intention is either not measurable in this method, or that intention waves are very different221

from rest waves, and should not be classified within the pre-movement hierarchy. With the movement222

HMM inability to classify movement data, we believe that under our current model, movement223

patterns should not be grouped together, and have significant enough differences to warrant separate224

HMMs or new models.225

4 Experiment 2226

4.1 The Motivation227

In Experiment two we utilize the Viterbi algorithm for determining the most likely sequence of hidden228

states given a sequence of windows. Unlike experiment one, we construct a single HMM for which229

we define the number of hidden states to precisely match the number of physical states that we are230

classifying, which are, rest, intention, left and right arm movement. The idea is that states are more231

homogeneous than experiment one assumed, and it would be better to use the temporal information232

of the state transitions to analyze a trial.233

Figure 6: HMM Sequence
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4.2 FFT/PSD/Data Processing234

In experiment two we transform data from the time domain to the frequency domain using Fast235

Fourier Transform. We take the approximately 1700 time steps, each of which has 9 values of the236

observed brain signals, and split them into windows like we did in experiment one. We take each237

window and use a pwelch transformation to get the component waves at each of the 9 electrodes, in238

the range of 6-40Hz, giving us 315 frequency values for each window to use as a feature vector.239

4.3 Learning240

Learning an HMM is the process of adjusting the model parameters to better the represent observation241

sequences. This raises an interesting observation in the format of our data. Since each trial is242

guaranteed to begin in the rest state, we can fix the initial distribution vector to match this property.243

Similarly, the state transitions are known to a certain extent, since in a trial we know that states can244

only either transition to themselves or transition from rest to intention, and intention to movement.245

We can leverage this prior knowledge in order to give a greater foundation for our model to learn an246

accurate emission matrix. To learn the HMM, we give PMTK3’s hmmFitFullyObs a sequence of full247

trials, along with labels, which returns a trained HMM (See Figure 7).248

Figure 7: Train Fully Observed HMM

4.4 Evaluation249

For classification we input an entire trial of observations, and our HMM into the Viterbi algorithm,250

know as hmmMap in PMTK3, which outputs the most likely sequence of states to match the trial (See251

Figure 8). For each observation, we will then know the most likely hidden state that our model will252

have been in at that time. Classification can then be a ratio of correct guesses to number of windows.253

Figure 8: Classify Test Sequence

4.5 Results254

We encountered a problem when we tried to use hmmMap to get the most likely set of states -255

it predicted sequences of full rest. We learned because our feature vector was so large, the log-256

probability of transitioning was -Inf, and as we started in the rest state, the HMM predicted it would257

remain in rest. Unfortunately, reducing the size of the feature vector by averaging the amplitudes258

across electrodes, did not improve the probabilities, and our results stayed the same.259

Figure 9. shows that when you analyze the average the amplitudes over a window for each frequency260

and compare the results between rest and movement, we see a possible explanation for the behavior.261

Notice that the movement frequencies have enormous overlap with the rest frequencies, and thus it is262

possible that our HMM cannot sufficiently distinguish between the two signals.263
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Figure 9: Average Amplitude across Windows for Electrode 1

5 Conclusion and Future Work264

In this paper we have discussed how we used Hidden Markov Models to analyze Electroencephalog-265

raphy data for patients moving their right and left arms. By keeping the data in the time domain and266

using multiple HMMs with unknown states we achieved moderate results distinguishing rest and267

right-arm movement. We also attempted to use a single HMM with fully observed, transformed data268

to capture the temporal properties of the sequences. Though conceptually it appeared to be a more269

effective strategy, we were unable to achieve any meaningful results which we believe was due to270

overlaps in the data combined with a strict transition matrix.271

In the future, experiment one could be further modified by increasing the amount of movement data,272

and trying similar strategies with in the frequency domain rather than time. By adding more transitions273

between rest and movement in the trials, it is possible that our transition matrix in experiment two274

would have been better suited to handle subtle differences. Further, if we had more transitions it is275

likely that learning transition signals between phases would be better represented, and more feasible276

to model the intent window as a longer sequence.277

Finally, our results indicating a difference between classification accuracy of left and right arms278

which implies the need for further examination.279
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