
Evaluating Dense-Binary Encoding for Regression

Jillian Anderson
Department of Computer Science

Simon Fraser University
jilliana@sfu.ca

Shawn Anderson
Department of Computer Science

Simon Fraser University
shawn anderson@sfu.ca

Brie Hoffman
Department of Computer Science

Simon Fraser University
brieh@sfu.ca

Ka Hang Jacky Lok
Department of Computer Science

Simon Fraser University
khlok@sfu.ca

Abstract

Encoding categorical features as numeric values is an important step in regres-
sion. One-hot encoding, a commonly used method, adds an extra boolean column
for each unique value of categorical variables, significantly increasing the number
of feature columns in a dataset. This causes problems for algorithms negatively
impacted by increased dimensionality and for large datasets where increases to
memory can be prohibitively expensive. We propose dense-binary encoding as a
memory efficient alternative for encoding categorical variables. We compare the
encoding methods across eight learning algorithms to predict housing prices. Re-
sults indicate dense-binary encoding may offer a more memory-efficient encoding
method, with comparable accuracy for regression problems.

1 Introduction

As with other machine learning tasks, regression often requires preprocessing of input data. Prepro-
cessing is an important and time-consuming aspect of machine learning which significantly impacts
how learning algorithms perform [2, 5]. Many regression models require transforming categorical
features to continuous values. This preprocessing task is called encoding. There are three funda-
mental types of categorical features: boolean, discrete ordered (ordinal), and discrete unordered
(discrete). Boolean features represent the presence or absence of an attribute and can be naturally
encoded to the domain {0, 1}. Ordinal features can be naturally encoded to a set of ordered inte-
gers. This paper focuses on unordered discrete features, which do not have a natural mapping to a
continuous set. Encoding henceforth refers to the encoding of unordered discrete features.

Encoding is typically performed using one-hot encoding (OHE), which uses a sparse binary rep-
resentation to encode categorical features [9]. Despite its common use, researchers have indicated
OHE’s propensity for adding features causes issues associated with dimensionality [9]. For exam-
ple, the addition of features to a model often results in significant decreases to the model’s predictive
power, a phenomenon called the ”Curse of Dimensionality” [10]. However, alternative encoding
methods can be used to address the problems associated with OHE.

Dense-binary encoding (DBE), is an alternative encoding method which reduces the number of
extra features added to the dataset. In DBE, the categorical variables are first randomly mapped to
consecutive integer values. These values are then converted to a binary representation, where each
digit becomes its own feature in the dataset. While demonstrations have shown DBE to be a viable
solution for classification problems, little research exists on how it holds up during regression [11].
We believe that by reducing the number of features created by encoding, DBE offers a promising
alternative to OHE, especially in the context of big data.

1



2 Approach

For our project we created two datasets by encoding the discrete variables using OHE and DBE.
Next, we applied eight popular machine learning models, and evaluated the results. We used root-
mean-squared-logarithmic error to evaluate accuracy between encoding methods and models.

2.1 One-Hot Encoding

One-hot encoding (OHE) is performed by creating a new feature of binary values (0, 1) for each
possible value from the original categorical column. For each discrete feature C with values i ∈
{x0, . . . , xn−1}, n new features are created and labeled C0, . . . , Cn−1. For each record where
C = xi, features C0, . . . , Cn−1 are set to 0, except for Ci which is set to 1. OHE adds N new
features to the dataset, where N is the sum of unique values for all discrete features.

2.2 Dense-Binary Encoding

Dense-binary encoding (DBE) offers an alternative to the OHE method. For each discrete feature C
with values i ∈ {x0, . . . , xn−1}, m new features are created where m = dlog2 ne. The features are
labeled C1, . . . , Cm. For each record where C = xi, xi is mapped to a base-ten ordinal value such
that xi → i. Each value i is mapped to the vector of binary values ~b = [b0, . . . , bm−1], where each
component is a coefficient bj such that:

i =

m∑
j=0

bj2
j

A potential problem with Dense-Binary Encoding is that it introduces a relationship between the
values of a particular feature. Since the binary code for one value will share more bits with some
values than with others, the values unintentionally become ”more” or ”less” similar. We believe this
consequence can be overcome by randomly assigning ordinal values to categorical values. Since the
probability of 2 bits matching between any two bit codes is p = 0.5, the Hamming distance between
any two binary codes will follow a binomial distribution with mean centered at np where n is the
length of the bit string [8].

2.3 Root Mean Squared Logarithmic Error

We used the root mean square logarithmic error (RMSLE) metric to evaluate the predictions of each
of our models. Where n is the number of observations, pi is the prediction of i, and ai is the true
value of i, RMSLE is defined as:

RMSLE =

√√√√ 1

n

n∑
i=1

(ln(pi + 1)− ln(ai + 1))2

3 Experiments

As shown above, DBE provides superior feature dimensionality and memory efficiency. However,
to determine how the two encoding methods compare in accuracy, we conducted three experiments
on a single dataset in the context of house price regression. Each experiment uses the same eight
regression models and compares performance across encodings.

Our first experiment compared OHE and DBE by applying regression models with default hyper-
parameter settings. Experiment 2 compared OHE and DBE by applying regression models with
tuned hyperparameter settings. In our final experiment, we combined the tuned regression models
to create an ensemble model for each encoding method and compared their resulting errors.

Figure 1 shows the experimental work-flow. We began by performing basic pre-processing on the
data. Next, we applied DBE and OHE to create two datasets. Finally, we performed three experi-
ments and evaluated the resulting predictions.

2



Figure 1: Flowchart describing our approach.

3.1 Data & Pre-Processing

The data used for this project was downloaded from Kaggle’s House Prices: Advanced Regression
Techniques’ competition and was originally compiled by Dean De Cock [3, 4]. The data contained
79 explanatory variables and a single target variable, representing features of 1460 homes sold in
Ames, Iowa. This hybrid dataset contained a combination of 35 continuous and 44 categorical fea-
tures. Of the categorical features, 1 was boolean, 15 were ordinal, and 28 were discrete unordered.

We implemented standard pre-processing as detailed in Sergei Neviadomski’s kernel posted on Kag-
gle [7]. Features which had more than half missing values or did not correlate with sale price were
dropped. Missing continuous values were filled in using their respective column’s mean. Missing
categorical values were filled in using the most common value in their respective column. Continu-
ous columns were standardized to have a mean of zero and a standard deviation of one.

After completing preprocessing, we encoded the remaining categorical features using both OHE and
DBE, generating two fully processed datasets. Of the initial 28 discrete unordered columns, 5 were
dropped during preprocessing. The remaining 23 discrete unordered columns contained a total of
173 unique values, which for OHE added 173 columns, and for DBE added 68 columns. In the end,
the OHE dataset contained 204 columns and the DBE dataset contained 99 columns, a difference of
105 columns, demonstrating the n→ logn reduction for the 23 discrete unordered features.

3



3.2 Experiment 1: A comparison of encodings using default parameters

To obtain a baseline comparison between the two encoding methods, we applied eight basic regres-
sion models with no tuning, using default parameter settings or guidelines found in documentation.
We used two linear models (elastic net, ridge), two non-parametric models (KNN, SVR), one neural
network, and three ensemble methods (random forest, GBR, XGBoost). These models were chosen
to represent a wide variety of popular models. The following steps were repeated for each model:

1. Create a 75%/25% train/test random split of the OHE train data
2. Train and score the algorithm using baseline parameters
3. Repeat steps 1 & 2 twenty times, to compute an average performance score
4. Repeat steps 1, 2, & 3 with DBE train data, using the same model parameters.

3.3 Experiement 2: A comparison of encodings, tuning for best results

Our second experiment considers that a model may have differing optimal hyper-parameter settings
depending on how the data is encoded. We reimplemented the process of Experiment 1, but did not
fix parameters across encodings. Instead, the parameters were tuned separately for each encoding
method to find an approximation of the lower bound error for both OHE and DBE.

3.4 Experiment 3: A comparison of encodings between ensembled algorithms

Finally, we created two ensemble models to compare how OHE and DBE performed overall on the
test set. The first ensemble model used the mean of the test-set predictions obtained by each model
as its ensembled prediction. The second ensemble model used a weighted average of the test-set
predictions obtained by each model as its ensembled prediction. The weights for predictions from
each model were computed using:

wm =
1−min(εm, 1)∑

m∈M 1−min(εm, 1)

where wm is the weight assigned to predictions made by model m, εm is model m’s RMSLE on
the validation set, and M is the set of all eight models. The inclusion of the min function ensured
models with RMSLEs greater than 1 were excluded from the ensemble model. This results in higher
weights for predictions produced by models which obtained low errors on the validation set. We
then found the RMSLE of the ensemble methods by submitting the resulting test-set predictions to
the Kaggle competition.

4 Experimental Results

As shown in Figure 2 and Table 1, we found models using default parameters tended to perform
better when used with OHE rather than DBE. The only model which performed better with DBE
was the neural network model, where DBE achieved an RMSLE of 0.333 compared to the OHE error
of 0.678. Due to the large reductions in error when using DBE with the neural network model, the
overall average error was reduced by using DBE. Additionally, in cases where models performed
better with OHE than DBE, the differences in errors was relatively small and often only present
when considering more than two significant digits.

When using tuned models, we found that OHE consistently outperformed DBE by a small margin,
as shown in Figure 3 and Table 1. Models which used DBE had an average RMSLE of 0.165, which
is 7.14% greater than the error obtained when using OHE.

Finally, as shown in Table 2, ensemble models which use DBE outperformed those which used OHE.
In fact, the DBE unweighted ensemble model outperformed the OHE weighted ensemble model. It
should be noted that the figures presented in Table 2 show the RMSLE values obtained by submitting
the test-set predictions to the Kaggle Competition. Thus, they should not be directly compared to
the values in Table 1, which were obtained using a hold-out validation set.

4



Figure 2: RMSLE for eight regression models using default parameters

Table 1: Average RMSLE over 20 iterations. The best results for each model type are bolded.
Default Average Error Tuned Average Error

Model DBE OHE DBE OHE

Ridge Regression 0.209 0.188 0.209 0.165
Elastic Net 0.211 0.207 0.190 0.185
K-Nearest Neighbour 0.180 0.167 0.174 0.168
Support Vector Regression 0.398 0.399 0.177 0.165
Neural Network 0.333 0.678 0.142 0.134
Random Forest 0.153 0.145 0.147 0.144
Gradient Boosted Regression 0.140 0.138 0.138 0.138
XGBoost 0.145 0.134 0.144 0.132

Total Error 1.768 2.450 1.320 1.232
Average Error 0.221 0.306 0.165 0.154

Figure 3: RMSLE for eight regression models, tuned for best results

5



Table 2: Results comparing the test score performance across encodings, given an ensemble of all
eight algorithms.

Model DBE Test Set Error OHE Test Set Error

Eight Model Mean Prediction 0.13921 0.16609
Weighted Eight Model Mean Prediction 0.13890 0.14949

5 Conclusions

Our results indicate that OHE tends to provide slightly more accurate predictions than DBE when
used with individual regression models. However, DBE did outperform OHE when used with an
ensemble model. This discrepancy could be because errors for individual models were calculated
using the validation set, while errors for the ensemble models were calculated by Kaggle, using
the test set. This serves to highlight the high similarity between the accuracies obtained by OHE
and DBE. Combining this finding with DBE’s ability to reduce feature dimensionality and improve
memory efficiency, this makes DBE a viable alternative to OHE.

The possible trade-off of accuracy in favour of dimensionality and memory reduction is well justified
when dealing with datasets containing large numbers of high-cardinality categorical features, where
DBE would offer significant dimensionality reduction over OHE. In these cases, the ability to reduce
dimensions and thus simplify the models may outweigh the small decrease in accuracy associated
with using DBE.

Additionally, DBE’s reduced accuracy may be justified in the context of big data. It is possible that
a dataset may contain a large enough number of rows that the addition of a large number of columns
may be prohibitively expensive. In these cases, DBE may offer a reasonably accurate and more
viable solution for categorical encoding.

We believe further research should be conducted to determine the effectiveness of DBE in compari-
son to other preprocessing schemes for categorical attributes such as clustering [1], and categorical
encoding using target statistics [6].

Contributions

The four authors contributed equally to this project, but focused on different tasks. The tasks which
each author made significant contributions to are shown below:

1. Jillian Anderson: Research, data cleaning and encoding, neural net modeling, results anal-
ysis, report writing.

2. Shawn Anderson: Research, data cleaning and encoding, K-Nearest Neighbours, Xgboost
and Random Forest modeling and model tuning, ensemble averaging, report writing.

3. Brie Hoffman: Research, Support Vector Regression and Gradient-boosted Trees model-
ing, Gradient Boosted Tree model tuning, results analysis, report writing.

4. Ka Hang Jacky Lok: Research, work-flow diagram, data preprocessing, Elastic Net and
Ridge Regression modeling, model tuning for Elastic Net, Ridge Regression, Neural Net
and Support Vector Regression, ensemble averaging.

References

[1] Jonathan D Becher, Pavel Berkhin, and Edmund Freeman. Automating exploratory data analysis for
efficient data mining. In Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 424–429. ACM, 2000.

[2] CrowdFlower. Data Scientist Report. Technical report, CrowdFlower, San Francisco, 2017.

[3] Dean De Cock. Ames, iowa: Alternative to the boston housing data as an end of semester regression
project. Journal of Statistics Education, 19(3), 2011.

6



[4] Kaggle. House prices: Advanced regression techniques. https://www.kaggle.com/c/
house-prices-advanced-regression-techniques.

[5] SB Kotsiantis, D Kanellopoulos, and PE Pintelas. Data preprocessing for supervised leaning. Interna-
tional Journal of Computer Science, 1(2):111–117, 2006.

[6] Daniele Micci-Barreca. A preprocessing scheme for high-cardinality categorical attributes in classifica-
tion and prediction problems. SIGKDD Explor. Newsl., 3(1):27–32, July 2001.

[7] Sergei Neviadomski. How to get to top 25/ https://www.kaggle.com/neviadomski/
how-to-get-to-top-25-with-simple-model-sklearn.

[8] Rasmus Berg Palm. Dense codes. http://rasmusbergpalm.github.io/2016/02/12/
dense-codes.html.

[9] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang. Product-based neural
networks for user response prediction. In Data Mining (ICDM), 2016 IEEE 16th International Conference
on, pages 1149–1154. IEEE, 2016.

[10] S Russell and P Norvig. Artificial Intelligence: A Modern Approach. Pearson, Upper Saddle River, 3
edition edition, December 2009.

[11] McGinnis W. Beyond One-Hot: incremental improvements in cate-
gorical encoding. http://www.willmcginnis.com/2016/06/17/
beyond-one-hot-incremental-improvements-categorical-encoding/, June
2016.

7

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/neviadomski/how-to-get-to-top-25-with-simple-model-sklearn
https://www.kaggle.com/neviadomski/how-to-get-to-top-25-with-simple-model-sklearn
http://rasmusbergpalm.github.io/2016/02/12/dense-codes.html
http://rasmusbergpalm.github.io/2016/02/12/dense-codes.html
http://www.willmcginnis.com/2016/06/17/beyond-one-hot-incremental-improvements-categorical-encoding/
http://www.willmcginnis.com/2016/06/17/beyond-one-hot-incremental-improvements-categorical-encoding/

	Introduction
	Approach
	One-Hot Encoding
	Dense-Binary Encoding
	Root Mean Squared Logarithmic Error

	Experiments
	Data & Pre-Processing
	Experiment 1: A comparison of encodings using default parameters
	Experiement 2: A comparison of encodings, tuning for best results
	Experiment 3: A comparison of encodings between ensembled algorithms

	Experimental Results
	Conclusions

