
Image format conversion with CUDA and General Purpose GPU
Programming

Shawn Anderson
Anna Mkrtchyan

I. INTRODUCTION
The purpose of this report is to compare CPU and GPU

implementations of image processing tasks, particularly, for-
mat conversion. In this report, we outline the details of our
parallel implementation of image colour space conversions
using the CUDA interface. We also perform experiments on
performance, and provide insight into some subtleties that
arise in practice.

II. BACKGROUND
A. Graphics Processing Units

Graphics Processing Units(GPU) allow for massive par-
allelization compared to CPUs. Leveraging such paralleliza-
tion has been shown to improve completion time of some
computational tasks by orders of magnitude. CPU’s typically
contain a number of cores in the range of two to eight. The
experiments in this report where completed on an Nvidia
GTX 1050ti, which has 768 cores. The most idiomatic use
case for the parallelization provided by GPUs is graphical
processing, essentially, image manipulation.

B. CUDA
In addition to manufacturing GPUs, Nvidia supplies a pro-

prietary application program interface (API) called CUDA,
which allows programmers to transfer data to, and execute
code on the GPU device. CUDA integrates with the C
programming language, Nvidia also provides a compiler
called NVCC, which will compile C code containing calls
to the CUDA API.

CUDA utilizes the concepts of blocks and threads to
organize its parallel structure. The programmer specifies the
number of parallel code executions by setting the number of
blocks and threads. For example, a CUDA program with
N blocks, and one thread per block will run N parallel
executions; a CUDA program with one block and N threads
per block will execute N parallel executions; a CUDA
program with N blocks and M threads per block will execute
N*M parallel executions. A block can have maximum 1024
threads. A process can have 231 − 1 blocks[1].

As with any system that aims to parallelize or distribute
computation, there is an overhead cost that must be paid.
In the case of CUDA, the overhead can be observed in the
segregation of CPU memory and GPU memory. Any data
that is to be processed by the GPU must be transfered over
the PCI-E bus from CPU memory to GPU memory. We
investigate the extent of this overhead in our experiments.

Simon Fraser University

C. Colour Space Conversion

RGB is a raw pixel image format in which each pixel
is represented by a three-tuple of values, one for each
of the primary colours red, green, and blue. Pixel values
range from 0 to 255. YUV is an alternative colour space
encoding which is more robust to transmission errors or
compression artifacts, at least in terms of human perception.
The conversion from RGB to YUV, and back, involves a
simple formula being applied to the image pixel-wise. Since
the same computation is applied to each pixel, the task is
embarrassingly parallelizable.

III. EVALUATION

All experiments are ran over two versions of the same
image. Firstly, a low resolution version, with dimensions
1000 x 700, occupying roughly 2 MB. Secondly, a high
resolution version, with dimensions 10000 x 7000, occupying
roughly 210 MB.

A. Experiment 1: Host to Device Data Transfer

The CUDA paradigm requires transferring data from
host(CPU) memory to device(GPU) memory. The first ex-
periment that we perform is measuring how long it takes to
transfer the image file over the PCI-E bus. We first copy
small and large images (see Sec. III) to the device and
measure transfer time of 0.53ms and 20.98ms for the small
and large images respectively. We then copy images to the
device and copy it back from device to host and measure
the transfer times of 0.928ms and 49.12ms. Comparison of
these two measurements reveals that it takes roughly the
same time to copy the image from the host to the device
as it takes to copy the image back from the device to the
host. It is important to mentions that these experiments were
performed after the initial launch of the empty kernel. We
also experiment with copying images to the device without
launching an initial kernel first and notice that times increase
up to 106.71ms for the small image and 115.81ms for the
large image. This is due to the fact that the device code
should be first compiled into PTX, which happens just-in-
time (JIT) manner [8]

B. Experiment 2: Various Threads and GPU Speedup

We next experiment with the various thread/block config-
urations for the image processing with cuda. As described
in Section II-C, we consider two types of image processing
tasks: RGB to YUV and YUV to RBG conversions. Our
benchmark is the CPU processing times for small and large



images. Specifically, we measure 31.71ms for RBG to YUV
and 11.16ms for YUV to RGB for the small image. As for
the large image, we measure 1610.69ms for RGB to YUV
and 1015.02ms YUV to RGB conversions.

How should we choose number of blocks/threads? While
designing our program, we follow the best practices and
specify number of threads. Number of blocks is then es-
timated based on the dimensions of the problem and to our
specified number of threads per block to ensure that the
entire image is scanned and processed (best practices were
discussed during the lab and in [6]). Motivated by the thread
scheduling hardware design, we vary the number of threads
per block as the multiples of 32. We also consider smaller
number of threads (specifically 1, 8 and 16). Our results are
shown in Figure 1. As we can see from the Fig. 1, there is

Fig. 1. Dependency of image conversion times on the number of threads for
RGB2YUV and YUV2RGB conversions for (A) small image (≈ 2MB) and
(B) large image (≈ 200MB). The largest conversion time for the one-thread-
per-block configuration sharply drops with increasing number of threads and
stabilizes at about 32 thread-per-block configuration.

a dramatic decrease in processing times as the number of
threads increases, but up to a point. For both large and small
images, we notice no improvements once number of threads
per block reaches 32. We continue to increase the number
of threads up to 1024 (maximum allowed number of threads
per block) and 1025. With 1024 threads per block, images
are processed normally, but once number of threads is set to
1025, we notice that images the output image is corrupted.
Thus, our experiments confirm that the maximum number of
threads that can be used per block is indeed 1024.

In Figure 2 we compare the optimal GPU runtime for each
image conversion task with the corresponding CPU runtime.

Fig. 2. Speedup for RGB to YUV and YUV to RGB conversions after
switching from CPU to GPU for (A) small image (≈ 2MB) and (B) large
image (≈ 200MB). Optimal GPU time (i.e. after speedup plateaus) is used
for comparison.

We consider the optimal GPU runtime as the one which
does not improve further with the increasing number of
the threads per block. For both large and small images the
speedup is incredible, between 5- to 10-fold (speedup more
prominent for RGB to YUV conversion than YUV to RGB
conversion).

C. Error Detection: Differences Between CPU and GPU
Floating Point Algebra

There is a subtle difference between images processed
by CPU and GPU. Specifically, during the RGB to YUV
conversion, we notice that GPU-processed images have some
of their pixel values differ by 1 from the corresponding
CPU-processed images. This is due to the difference in how
different devices, such as CPU and GPU, handle the rounding
of the floating points [7]. Generally, such level of discrepancy
between two outputs is expected and acceptable. We keep
track of the maximum pixel difference for the RGB to YUV
conversion and found that the difference is of a 1 pixel
at most. While not a problem for a single conversion, this
difference propagates further during the next stage of the
calculations (YUV to RGB conversion). Indeed, we notice
the maximum difference in pixels between two images after
YUV to RGB conversion being as high as 4 pixels (still small
value).



IV. CONCLUSIONS

In this work we experimented with the “Hello Cuda
World!” program, the conversion of image from one for-
mat to another, which is a problems that can be highly
parallelized. We captured several important details about
working with cuda which summarize below. Firstly, we saw
the implications of the just-in-time compile on the first kernel
runtime. Thus, for reliable time measurements, one needs
to launch an empty kernel first. Secondly, we noticed that
copying image from the host to device and copying image
from the device to host takes about the same time. Next,
we notice that even without optimizing GPU processing
parameters (number of blocks/threads) we get a noticeable
speedup over CPU processing times. We also notice that
as we increase number of threads per block, we get a
significant improvement in the GPU performance. This is due
to the fact that threads share resources (memory etc), which
can increase the performance. Once we increase number of
threads to 32, we do not see any further improvements.
We believe this depends on the problem size, and the fact
that kernels request threads in chunks of 32 (warps), so the
optimal load is reached once the number of threads reach
32 per block. Finally, we notice the discrepancies between
how CPU and GPU handle floating points. For our task, we
noticed difference up to a pixel which had to do with the way
floats are rounded up/down to integers. While not essential
for this particular problem, this is something that one needs
to keep in mind.

REFERENCES

[1] CUDA Wikipedia
[2] Understanding the Efficiency of GPU Algorithms for Matrix-Matrix

Multiplication
[3] Introduction to GPU Computing and CUDA Programming: A Case

Study on FOlD
[4] From CUDA to OpenCL: Towards a Performance-portable Solution

for Multi-platform GPU Programming
[5] NVIDIA CUDA Programming Guide
[6] https://devblogs.nvidia.com/easy-introduction-cuda-c-and-c/
[7] Precision & Performance:Floating Point and

IEEE 754 Compliance for NVIDIA GPUs
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/NVIDIA-
CUDA-Floating-Point.pdf

[8] http://docs.nvidia.com/cuda/cuda-compiler-driver-
nvcc/index.html#just-in-time-compilation


