
Reinforcement Learning and Evolutionary Strategy for Control Tasks:
A Comparison of Parallel Scalability

Shawn Anderson(saa108@sfu.ca)
Sethuraman Annamalai(sannamal@sfu.ca)

Namita Shah(namitas@sfu.ca)

I. INTRODUCTION

In recent years, a Big Data ecosystem has emerged.
Industry and Science have seen growth in compounding
factors, such as: size of datasets, distributed infrastructure,
mass parallelism, and number of talented practitioners. In this
embryonic landscape there has been a trend of resurgence for
decades-old, biologically-inspired, optimization techniques
that fall under the umbrella of Artificial Intelligence(AI). The
trend started in 2009 when Deep Learning(DL) applications
began winning international pattern recognition contests [14].
The trend now continues with Deep Reinforcement Learn-
ing(RL).

RL is an approach for solving control tasks such as
robotics or game playing. RL techniques have recently
reached super human performance in playing highly dimen-
sional games such as Go and Atari [12]. Today, in 2018, we
are seeing the resurgence of Evolutionary Strategy(ES) as an
alternative solution for solving highly complex control tasks
such as business optimizations at Uber [13]. Evolutionary
strategy is proving to be competitive with RL for game
playing, while being simpler to implement and easier to
parallelize.

The purpose of this paper is to serve as a comparison of
state of the the art RL and ES algorithms for benchmark
control tasks. OpenAI hosts a suite of benchmark control
tasks in their Gym environment library [1]. Gym is meant
to be a standardized set of tasks for which RL researchers
can use to show reproducible results of algorithms. In this
paper we implement RL and ES solutions for the CartPole
problem [11], which is hosted under the Classic Control
section of Gym environments. We compare ES and RL in
terms of implementation difficulty, parallelization difficulty,
parallel scalability, performance, resource utilization, and
power consumption. Tests are ran across varying numbers
of CPU cores, with and without GPU utilization.

II. BACKGROUND

A. Deep Reinforcement Learning

Reinforcement Learning is a biologically inspired, dy-
namic programming method for control tasks, pioneered by
Sutton and Barto in the 1980s [4]. The essential paradigm
of reinforcement learning is that of an Agent within an
Environment. At any point in time, the agent finds itself in a

Simon Fraser University

particular state within the environment. Given the state, the
agent will take an action. Given the action, the environment
will give a positive or negative reward to the agent and
change to a new state, this action, reward, state change cycle
is repeated in a loop over the course of an episode. The
purpose of the agent is to maximize reward over an episode
as it moves throughout states in the environment. In other
words, the task of the agent is to choose actions that will
maximize the reward received from the environment.

In 2015, Deepmind took Reinforcement Learning to a new
level when it showed that reinforcement learning, combined
with deep neural networks could be used to solve a general
domain of problems with a single algorithm. Deepmind used
Deep Reinforcement Learning to solve an array of Atari
games, with no special domain knowledge for any particular
game [4]. The agent only received state input in the form
of screen pixels, and reward in the form of the game score.
Deepmind continued to showcase the power of Deep RL
when its Go playing AI AlphaGO defeated Grandmaster Lee
Sedol in 2016 [2].

Deep Reinforcement Learning algorithms have tradition-
ally been difficult to parallelize, and prone to diverge with
subtle hyper-parameter or environment perturbations. There
has been a lot of progress in recent years in finding robust and
parallelizable approaches to using RL for control tasks. One
successful, and widely adopted approach is Asynchronous
Actor-Critic Agents(A3C) [3]. We investigate A3C as a
solution to the CartPole environment.

B. Asynchronous Actor-Critic Agents

Until the recent past the most widely used technique to
solve various reward based problems were multiple variations
of DQNs(Deep Q-Networks) where an agent is trained on
a copy of the problem instance utilizing a simple neural
network with policy gradients [8]. So what if multiple agents
(agents and workers will hereafter be used interchangeably)
get trained in parallel and all the knowledge gained is
effectively utilized to solve the problem? This scope along
with the inability to parallelize traditional RL algorithms
gave rise to A3C, which can fully take advantage of parallel
computation technologies such as multi-core processing and
GPUs.

In A3C, multiple worker agents are created (depending
on the machine capability). Each agent has its own copy
of the problem environment. These agents iteratively learn



Fig. 1. Basic A3C architecture

through experience from their environments by taking ran-
dom actions. The learning is primarily done by combining
Q-Learning and policy gradients. All these experiences from
different agents are combined together so that the overall
training becomes as diverse as possible. Fig. 1. depicts a
basic A3C architecture.

C. Evolutionary Strategy

Evolution Strategy (ES) is a search optimization paradigm
that is inspired by the process of natural evolution[9].
The idea is to sample randomly about a current position
in an optimization space, then move the current position
towards those samples that appear closer to the optimization
objective. Key concepts are that of Population, Mutation,
Generation, Fitness, and Breeding. Given some point in an
optimization space, a population can be created by randomly
perturbing the point to create an array of new points, follow-
ing some defined distribution. These random perturbations
are known as mutation. Given a population, each point can
be assessed for its fitness. Fitness is a notion of being
closer to the objective. Each agent in the population will
be assessed for its fitness, and those with satisfactory fitness
will be selected to produce the next generation. The selection
and combination phase can be described as Breeding. The
process of mutation, selection, and breeding, is iteratively
repeated until the optimization objective is satisfied.

ES is highly parallelizable due to it’s simple nature of
generating and evaluating samples. Samples need not even be
broadcast to workers. If a worker knows the current central
point of the population, it can generate it’s own population
through random mutation, evaluate the population, and select
for the fittest agents, all independently. If we have 100 neural
networks in our population and 100 processors, all of those
networks can be evaluated at the same time [10].

D. NeuroEvolution

The particular type of ES that we evaluate is known
as NeuroEvolution. NeuroEvolution is a method for train-

ing neural networks, alternative to backpropogation. In this
case, the central point of our population, as described
above, is a set of parameter values for an Artificial Neural
Network(ANN). The mutation process involves adding a
symmetrical, Gaussian sampled noise value to each of the
parameters in the network. By sampling a population of
mutations, we produce an array of new ANNs, all with
the same topology as our original, but all with different
parameter values. We then evaluate each new network in
solving our control task. To breed the population we produce
a new ANN with parameters equal to a weighted average of
the parameters of our population, where the weight given to
each agent in the population, is the fitness of that agent. This
process is formalized by [6] in figure 3.

Fig. 2. Pseudo code for factored Gaussian NeuroEvolution[9].

E. OpenAI Gym and CartPole

Gym is an open source suite of simulation environments
for testing RL algorithms with a python interface. Gym is
made by OpenAI, a research organization which publishes
work across the field of AI, including Deep Learning, Re-
inforcement Learning, and Evolution Strategy. Elon Musk
is a founder, and the chairman of OpenAI. Musk advocates
openness of research as essential to addressing any potential
threat that Artificial General Intelligence(AGI) may pose to
humanity.

CartPole is a classic control problem [11] in which a pole
is balanced on a cart. The cart must balance the pole by
moving along a single dimension. The cart must do this
without exiting the allowed movement area. If the cart goes
out of bounds or the pole falls beyond 15 degrees from
vertical the episode is finished. The agent(the cart) receives
+1 reward for every time step that the episode continues.
Thus the goal of the agent is to maximize the number of
time steps for which the pole is balanced. The environment
state is composed of two real values, the position of the cart,
and the angle of the pole. The agent chooses one of two
actions for each time step, to move left or right. Solving the
environment, or ’converging’ is defined as achieving greater
than 195 reward, averaged over 100 consecutive episodes.
In our experiments, we run episodes with a max reward of
10000, such that agents have more room for learning, and to
increase the duration of experiments.

F. Multiprocessing and GPU Parallelism

Since 2004 computational scaling has transitioned from
vertical scaling, the production of more powerful processors,
to horizantal scaling, the distribution of tasks across multiple
processors. The trend of horizontal scaling began with the



Fig. 3. A rendered image of the CartPole learning environment[9].

proliferation of multi-core CPUs, then progressed to mass
parallelism with GPUs, and today continues in the realm
of distributed systems. As this is the natural progression
of parallelism, this is the approach that we took with our
experiments. For each of NeuroEvolution, and A3C, we first
implement solutions to the CartPole problem with single
core implementations, moving on to multi-core, and then
GPU implementations. Distributed implementations is left
for future work.

All experiments are done with CPU: Intel(R) Core(TM)
i7-7700 CPU @ 3.60GHz. This CPU has four cores, and
two threads per core, resulting in a total of 8 threads. All
experiments with GPU are done with: Nvidia GeForce GTX
1050 Ti. This GPU has 768 CUDA cores, and 4GB of
memory.

III. METHODOLOGY

A. Asynchronous Actor-Critic Agents

The version of A3C used here is deployed on top of
TensorFlow. We make use of the following fundamental
building blocks of an A3C architecture to solve the CartPole
problem in a parallel environment.

1) Environment: The Gym environment to solve the
problem to achieve maximum reward. In this case, the
CartPole environment.

2) A3C Network: Incorporates the components of
the TensorFlow graph model. This topology allows the
workers to communicate with the brain and vice versa. By
communication, we mean the process of updating losses and
gradients back and forth between the brain and the workers.

3) Agents: Multiple agents are deployed, each with a
separate copy of the environment. Each agent is created
on one physical thread on the machine being used. These
agents then interact with their environments by taking
random steps to maximize their reward getting potential.
This is done through computations of basic Q-values of
different states with respect to different actions, with which
the “advantage” is calculated which acts as the basic update
rule in the learner.

4) Brain: The brain essentially consists of two parts.
A data queue and a simple neural network. The agents
append their experiences to this queue in an asynchronous

fashion. These experiences are then considered to be the
new training data, compressed into batches and the network
is iteratively optimized as new experiences get added to the
queue.

5) Optimizer: The function of the optimizer is to
recursively train the brain’s network with the incoming
samples of experiences from the workers. One simple
Optimizer thread cannot keep up with the pace of the
incoming samples. Hence, two optimizer threads are
deployed where one thread pre-processes the data into the
required format while the other thread computes the losses
and the gradients needed to train the network either using a
CPU or a GPU based on the TensorFlow implementation.

Also, the required hyper-parameters for the models
were tuned using an efficient grid search model for
various configurations (varying the number of threads and
optimizers). These selected set of hyper-parameters were
fixed for all the conducted experiments on A3C.

With brevity in mind, the detailed mathematics involved in
the Q-Learning of the agents and the deep neural network of
the brain is not discussed here. The essence of the paper is to
bring out an effective methodology to solve these problems
from a systems perspective.

B. Evolution Strategy

1) Neural Networks for Environment Navigation: We
implement a simple version of Evolution Strategy under
the class of Natural Evolution Strategy(NES), specifically,
NeuroEvolution, as described in [Evolution Strategies]. In
this algorithm, a neural network is used to select actions.
The input to the network is the environment state, the output
is a distribution over the action space of the agent. The
environment state is described as a vector, in the case of
CartPole, it is a vector of length two, a real scalar for the
position of the cart, and a real scalar for the angle of the
pole. The output of the network is a softmax activation.
Softmax outputs a stochastic distribution over the action
space. The action space for CartPole is the domain [0,1],
where 0 represents moving left, and 1 represents moving
right.

2) Action Selection: From the softmax output, there are
two possible strategies for selecting which action to take, first
is to simply select the argmax of the distribution, secondly
is to sample from the distribution. For example, if the net-
work output [0.3,0.7], an argmax implementation would take
action 1, moving to the right, but a sample implementation
would move to the right with 70% probability, and to the left
with 30% probability. Action selection methods will have
their own advantages and disadvantages for different prob-
lems. The sampling technique offers more exploration, and
flexibility for complex, or adaptive environments. Whereas
the argmax approach is better for simpler environments. For
CartPole we use argmax.



3) Keras Implementation: Keras is a high level imper-
ative interface for constructing neural networks [7]. It is
a python library which uses graph computation backends
such as Tensorflow or Theano. Keras makes it very easy
to quickly implement and test neural network architectures.
For this reason it was a natural choice for a NeuroEvolution
implementation.

Indeed, a NeuroEvolution implementation with Keras
proved to be very simple. A Keras model provides
get weights, and set weights methods. For each generation of
agents, we simply get the weights of our model, flatten them
to a 1-D vector, generate 200 random noise vectors of equal
length, and produce 200 mutations of our network by adding
the weights to each random noise vector. For each mutation,
we set weights of our model to the respective mutated
weights and evaluate the fitness on a single episode of
cartpole, where the fitness is the amount of reward achieved,
or the number of consecutive steps that the agent succeeds
in balancing the pole. Once we have evaluated the fitness
of all of our mutations, we recombine them to a single set
of weights by taking a weighted average of the mutations,
weighted by fitness. This process is repeated for a certain
amount of time, or until a convergence threshold is reached.

Although Keras made for a very simple single process
implementation of NeuroEvolution, it was a roadblock for a
mult-threaded implementation. Any call to the Keras API
within a python subprocess would result in our program
hanging indefinitely with no error message, an indication
of deadlock. In our research we found that this is a well
known problem with Keras. Despite valiant effort, we could
not find a solution to this problem, and had to abandon
Keras in pursuit of a multi-threaded NeuroEvolution solution
to CartPole. More on this issue with Keras is discussed in
section VI.

4) Numpy and Minpy Implementations: We realized
that our neural network architecture for this prob-
lem is simple enough that we could implement it by
hand just using numpy. Numpy offers C-like contigu-
ous arrays for python. The implementation is especially
simple considering there is no need for gradients or
backpropogation with NeuroEvolution. Only the feed-
forward part of the network must be implemented. We
soon found an open source implementation of ES that
does just this[https://github.com/MorvanZhou/Evolutionary-
Algorithm]. It was simple to modify this code for our
experiments, running on multiple threads, and recording
necessary metrics during training.

We attempted to modify our numpy ES implementation to
run on GPU using minpy [5]. Minpy is a numpy interface
that uses Apache MXNet [9] as a backend. MXNet serves as
an open source interface to CUDA, allowing for GPU usage
for numpy array and matrix processing. Unfortunately, due
to time constraints, and limitations of the minpy API, we
were not able to get experiment data for this version of our
ES implementation. This is left for future work.

IV. EXPERIMENTS

Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, and Nvidia
GeForce GTX 1050 Ti are used in experiments conducted to
analyze the performance of various parallel configurations.

A. Evaluating A3C

Two types of experiments (using both CPU and GPU)
were carried out to analyze the performance of A3C to
solve the CartPole problem.

1) Varying Training Time: The training part of the A3C
architecture can be divided into two parts. In the first part,
all the agents start interacting with their environments to
generate experiences and these experiences are appended to
the training queue for the brain. In the second part, the data
from training queue is taken and the brain is optimized.
An important thing to note here is, both the parts are
done asynchronously. The first experiment was varying this
training time. Training for 10, 30 and 60 seconds were
carried out.

2) Varying Number of Worker Threads: The
implementation of A3C produces each worker on a
separate physical thread of the machine. Hence, a machine
with more number of cores has the capability to host
numerous worker agents for the initial training. This would
ultimately produce more sample experience with which the
brain can be optimized.

Refer Fig. 4., Fig. 5. and Fig. 6. where the iterative
reward obtained by different worker agents against increasing
sequential number of episodes is plotted with respect to both
the experiments stated above. In A3C implementation, the
learning method employed by different worker agents in-
volves taking random steps and learning from those steps by
continuously interacting with the brain. Since considerable
amount of randomness is involved, one run of any experiment
would not paint an accurate picture of the observed metrics.
Hence, for each of the configuration 10 runs were made and
the averages were computed. In the plots, each point depicts
the average reward obtained by one worker in a particular
episode over 10 runs.

From these plots, the following things can be observed
1) Unsurprisingly, training the network for a longer time

makes the worker agents to contribute a higher number
of sample experiences for the brain

2) Similarly, having a higher number of threads also
contributes to a higher number of sample experiences
since each physical thread contributes to one worker.

3) The average reward attained by different workers (ir-
respective of the processing unit) is higher when the
network is trained for a longer time or the number of
worker agents in the architecture is high. The explana-
tion behind this is quite straightforward, when there are
either more threads or when the network is trained for
a longer time, the number of samples created is large,
as explained in the two points above. Since there are



Fig. 4. Episodes vs Reward - 10 Seconds training with 1, 2, 4 and 8 threads respectively

Fig. 5. Episodes vs Reward - 30 Seconds training with 1, 2, 4 and 8 threads respectively

Fig. 6. Episodes vs Reward - 1 minute training with 1, 2, 4 and 8 threads respectively

more samples, the brain gets optimized with a higher
amount of samples leading to a high quality learning.
Also, the iterative learning of each worker involves
interacting with the brain periodically. So, when the
brain has better knowledge about the problem being
solved, it benefits the agent and the consecutive steps
taken by the agents become iteratively better.

4) In the lower configurations, i.e., lesser number of
threads and shorter training time, the performance of
CPU and GPU is quite comparable. In fact, in most
cases, there is no clear winner, and it was observed
that it was random to an extent.

5) In higher configurations, i.e., higher number of threads
and longer training time, it can be seen that the
performance (in terms of reward reaching potential)
is higher in GPU.

6) The training and learning processes of both the brain
and the workers consists of computations such as
gradient losses, advantage, etc. All of these are pre-

dominantly matrix operations. When the TensorFlow
model is deployed on the CPU, these operations are
performed on the CPU and on the GPU otherwise.
Matrix operations on GPU are generally multiple times
faster when compared to the CPU. When the number
of samples is less or the training time is shorter, this
advantage is not quite seen. But when the number of
training samples are high in the higher configurations
the GPU is the clear winner because of this reason.

7) For example, when the network is trained for 60 sec-
onds with 8 worker threads (the highest configuration),
on an average close to 900 samples are created in
both the processing units. But since the operations in
the GPU are computed extremely fast, the number of
optimize operations performed on the brain is going
to be higher. This leads to a higher quality brain and
ultimately better sample experiences from the workers.
The computing power which enables a higher number
of optimize operations is the real reason behind GPU



TABLE I
NUMBER OF OPTIMIZATIONS IN CPU

Training Time 1 Thread 2 Threads 4 Threads 8 Threads
10 Seconds 4190519 3315009 1843934 169917
30 Seconds 12408341 9468782 4900181 216279
60 Seconds 24511211 18729065 8828144 284966

TABLE II
NUMBER OF OPTIMIZATIONS IN GPU

Training Time 1 Thread 2 Threads 4 Threads 8 Threads
10 Seconds 4262052 3463418 1942255 282510
30 Seconds 12367608 9994129 5179248 371449
60 Seconds 25201837 19071461 9661038 502272

implementation of the A3C network performing better
than the CPU version.

8) The number of optimizations to the brain determines
the extent to which agents can claim rewards. From
tables I and II it can be seen that the number of
optimizations performed to the brain is high in GPU for
every configuration. It can also be seen that the as the
number of worker threads increases, the number of op-
timizations performed decreases. This can be attributed
to the fact that the “Intel(R) Core(TM) i7-7700 CPU
@ 3.60GHz” has 4 cores and 8 physical threads. Apart
from the worker threads, there are optimizer threads
running on the machine, hence the interleaving of the
threads decreases the number of optimizations.

9) For example, compare the 1 worker and 8 work-
ers network trained for 60 seconds. Though the 1
worker implementation produces more than 5 times
the optimization count as the 8 worker configuration,
it still cannot beat the performance of the 8 thread
implementation. This is because, in the 8 thread imple-
mentation, the number of experience sample produces
is very high and diverse when compared to the 1 thread
implementation.

B. Evaluating NeuroEvolution

To evaluate NeuroEvolution, we vary the number of cores,
and give the algorithm a fixed amount of training time,
to see what level of reward the agent can achieve in the
allotted time. Results of this experiment can be seen in
Figure 9 as a comparison to A3C. From this investigation
we can see that NeuroEvolution achieves high performance
even with a single core, and scales linearly with number
of cores added. This result is rather impressive, and shows
the potential of ES as a highly scalable, yet more simple
alternative to backpropogation. The parallel performance
gains can clearly be seen in figure 7 which shows that
more threads directly results in faster generation iterations.
It would be very interesting to continue testing this trend in
a distributed setting with many more cores. We hypothesis
that the linear gains would continue for very large numbers
of threads due to the very small communication required by
the parallelized ES algorithm.

Fig. 7. A display of the learning capability of NeuroEvolution on the
CartPole problem. There is a component of momentum in the learning
process of evolution, once stepping stones are discovered, they compound
progress towards the objective.

Fig. 8. NeuroEvolution: The time it takes to evaluate and breed a generation
of network mutations by number of threads. Later generations take longer
because episodes last longer as the agent gets better at balancing the pole.
We can see that with more threads, generations are processed faster. This
highlights the parallel scalability of NeuroEvolution.



Fig. 9. A comparison of performance scalability between RL and ES. We can see that ES has much higher performance in the case of a single thread,
but as training time increases, and number of threads increases, A3C begins to approach the performance of NeuroEvolution. It would be interesting to
see how this trend continues in a distributed setting with tens or hundreds of cores.

C. Comparison

Both algorithms have made significant contributions to the
space of control tasks. We feel that neither algorithm can
be strictly proclaimed as superior, although the simplicity
and high initial performance of ES is highly appealing. We
have highlighted two essential concepts to consider when
choosing an algorithm as a solution to a control task: 1.
Complexity, we believe that higher complexity problems may
demand higher complexity solutions. 2. Resources available,
A3C benefits highly from GPU, do to it’s use of traditional
backpropogation for training it’s brain. With ES, additional
CPU cores are more important than access to GPU, as no
backpropogation is required. A comparison of performance
scalability between the algorithms can be seen in figure 9.

In terms of CPU utilization, ES seems to scale perfectly

up to 8 cores, with no overhead introduced by adding more
cores. This is due to the lack of data sharing requirements
of workers. This high CPU utilization is not necessarily
a strict advantage. A3C appears to have high performance
scaling, while have low CPU utilization scaling. At large
scale this could potentially result in comparable performance
to ES while having lower power consumption. Comparisons
of resource utilization and power consumption can be seen
in figure 10.

V. LEARNINGS

A. Reinforcement Learning and Evolution Strategy

Two of our group members had zero experience with
Reinforcement Learning, and none of us had any experience
with Evolution Strategy. We read a lot of papers and blog
posts about how these things work. We learned the most



Fig. 10. A comparison of resource utilization and power consumption between A3C and NeuroEvolution. We can see that CPU utilization begins similar
for both algorithms, but power consumption is higher for A3C. Also, CPU utilization scales much better for NeuroEvolution. These two observations imply
that A3C has much higher communication overhead than NeuroEvolution, and indeed this is true.

however, from reading and using implementations found on
the web, and in the case of ES, making our own imple-
mentations. Running experiments over various parameters
of the algorithms, and with different resources gave a deep
understanding of the mechanisms at play in these algorithms,
especially from a systems perspective.

B. Scientific Process and Measurement Tools

One of the most interesting and challenging aspects of
the project is the process of experiment design. Often we
found that we did not truly understand what questions we
were asking until we began collecting data to answer those
questions. Results of one experiment would lead to deeper
questions to be answered by another experiment. We did not
foresee measuring power consumption until very late in our
work, but doing so lead to very interesting findings, and align
with theoretical principles of the algorithms.

C. Tensorflow Locking Mechanisms Prevent Multiprocessing

It is a known, and unsolved issue with Keras that it will
hang when being used in a subprocess or thread. This is
due to locking mechanisms which are used when accessing
the model weights. To solve this we tried using alternative
backends such as Tensorflow and Theano, we tried moving
around Keras imports and instantiations, such as only within
subprocesses themselves, we investigated disabling tensor-
flow locking, all with no success. We found many references
around the web with very few claiming success. We tried
the approaches proposed by those who claimed success, but
we were unsuccessful in reproducing their results. Eventually
we opted to not use keras for network creation, using numpy
instead. This was simple enough as the network is small, and
there is no need for back propagation in Evolution Strategy.

D. Sparse Rewards in the MountainCar Environment

The original environment that we chose to run our experi-
ments on is the MountainCar environment under the Classic
Control section of Gym environments. In this problem, a car

has found itself at the bottom of a valley, and does not have
enough power to drive up out of the valley. The solution is for
the car to drive back and fourth, using momentum to escape
the valley. No positive reward is ever given to the agent until
it actually escapes the valley. This problem can be labeled as
a Sparse Reward learning problem because the agent never
receives any reward until it solves the task. This requires
an agent to first solve the task through random exploration
with no notion of fitness, before it can gain reward and begin
learning.

The sparse reward nature of this problem proved to make
it extremely difficult to solve, and solutions had extreme
variability in their time to find a solution. For this reasons
we were forced to abandon the MountainCar problem as a
good benchmark for our experiments.

VI. FUTURE WORK

There are many interesting frameworks available for ES
implementations in python which we did not get a chance
to investigate in this work. In particular, DEAP, is a dis-
tributed, multiprocessing library for evolutionary algorithms
in python. Elephas is a distributed Keras extension built with
SPARK. Using Elephas could be a way around the mul-
tiprocessing challenges that we face from Keras’s intrinsic
locking mechanisms. Using such frameworks, we would like
to continue our experiments with many more number of cores
in a distributed environment.

We would like to test these algorithms in more complex
and highly dimensional learning environments such as the
MuJoCo physics simulator. We have also discovered the
PyGame Learning Environment, which offers many rein-
forcement learning environments as alternatives to Gym
environments.

VII. CONCLUSIONS

Both algorithms are excellent for control tasks and offer
efficient scalability. ES is much simpler in design, it is
simpler to implement and simpler to parallelize. For this



reason we suggest ES as a preferable solution to simple
problems such as the CartPole problem. However, we have a
feeling that more complex tasks may demand more complex
solutions. A3C appears to be approaching the performance of
ES as running time and number of threads is increased. Also,
A3C appears to scale better in terms of power consumption.
We believe there may be a critical point of task complexity in
which A3C surpasses ES in terms of scalable performance.
We would like to see future work done to investigate this
hypothesis.

VIII. REFERENCES

*References
[1] 1606.01540.pdf. https://arxiv.org/pdf/1606.01540.

pdf.
[2] Alphago — deepmind. https://deepmind.com/research/

alphago/.
[3] Asynchronous methods for deep reinforcement learning. https://

arxiv.org/pdf/1602.01783.pdf.
[4] bookdraft2017nov5.pdf. http://incompleteideas.net/

book/bookdraft2017nov5.pdf.
[5] dmlc/minpy: Numpy interface with mixed backend execution.

https://github.com/dmlc/minpy. (Accessed on
04/14/2018).

[6] Evolution strategies as a scalable alternative to reinforcement learning.
https://arxiv.org/pdf/1703.03864.pdf.

[7] keras-team/keras: Deep learning for humans. https://github.
com/keras-team/keras.

[8] Lets make an a3c: Implementation — . https://jaromiru.com/
2017/03/26/lets-make-an-a3c-implementation/.

[9] Mxnet: A scalable deep learning framework. https://mxnet.
apache.org/.

[10] Neuroevolution: A different kind of deep learning -
o’reilly media. https://www.oreilly.com/ideas/
neuroevolution-a-different-kind-of-deep-learning.

[11] Openai gym. https://gym.openai.com/envs/
CartPole-v0/.

[12] Playing atari with deep reinforcement learning — deepmind.
https://deepmind.com/research/publications/
playing-atari-deep-reinforcement-learning/.
(Accessed on 04/14/2018).

[13] Welcoming the era of deep neuroevolution — uber engineering blog.
https://eng.uber.com/deep-neuroevolution/.

[14] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
CoRR, abs/1404.7828, 2014.


